Wichita State University Logo

Math 242: Calculus I

1.7 Definition of a Limit


1.7.1 Definition of Limits¶

$$ \require{color} \definecolor{brightblue}{rgb}{.267, .298, .812} \definecolor{darkblue}{rgb}{0.0, 0.0, 1.0} \definecolor{palepink}{rgb}{1, .73, .8} \definecolor{softmagenta}{rgb}{.99,.34,.86} \definecolor{blueviolet}{rgb}{.537,.192,.937} \definecolor{jonquil}{rgb}{.949,.792,.098} \definecolor{shockingpink}{rgb}{1, 0, .741} \definecolor{royalblue}{rgb}{0, .341, .914} \definecolor{alien}{rgb}{.529,.914,.067} \definecolor{crimson}{rgb}{1, .094, .271} \def\ihat{\mathbf{\hat{\unicode{x0131}}}} \def\jhat{\mathbf{\hat{\unicode{x0237}}}} \def\khat{\mathbf{\hat{\unicode{x1d458}}}} \def\tombstone{\unicode{x220E}} \def\contradiction{\unicode{x2A33}} $$

Definition¶

The left-hand limit of $f(x)$ as $x$ approaches $a$ is denoted by

$$ \displaystyle\lim_{x\rightarrow a^-} f(x) = L $$

if and only if for every $\epsilon > 0$, there is a $\delta > 0$ so that $a-x<\delta$ implies that $|f(x)-L|<\epsilon$.

The right-hand limit of $f(x)$ as $x$ approaches $a$ is denoted by

$$ \displaystyle\lim_{x\rightarrow a^+} f(x) = M $$

if and only if for every $\epsilon > 0$, there is a $\delta > 0$ so that $x-a<\delta$ implies that $|f(x)-L|<\epsilon$.

Definition¶

We say that the limit of a function is equal to $L$ as $x$ approaches $a$ if and only if, given an $\epsilon > 0$, we can find a small enough $\delta > 0$ so that $|x-a|<\delta$ implies that $|f(x)-L|<\epsilon$.

Example 1¶

Consider a constant function $y=2$. Then we claim that $\displaystyle\lim_{x\rightarrow 5^+} = 2$. We need to justify this claim using the Weierstrauss definition of the limit first here and in section 1.5.

Proof¶

Given a small positive number $\epsilon>0$, we must find a $\delta > 0$ so that $x - a < \delta$ implies that $|f(x)-L| < \epsilon$. In this problem

$$ a = 5,\ L = 2,\ f(x) = 2 $$

We must find a $\delta > 0$ so that $x - 5 < \delta$ implies that $|2 - 2| < \epsilon$. Now $|2 - 2| = 0 < \epsilon$ no matter what $\delta$ we pick. However we must pick one, so let's pick $0 < \delta < \epsilon$. It is preferable to give the reader an interval of $\delta$'s to choose from.

Then for any $x\in\left[5, 5+\delta\right]$, i.e. $x - 5 < \delta$, we have that $|2 - 2| = 0 < \epsilon$.

We just proved that the right-hand limit as $x$ approaches 5 of the constant function $f(x) = 2$ is in fact $2$.

$$ \displaystyle\lim_{x\rightarrow 5^+} 2 = 2 $$

$\unicode{x220E}$

Exercise 1¶

Show that the limit from the left of the function $f(x)=2$ as $x$ approaches $5$ is also $2$.

Solution
The answer is very similar. Given an $\epsilon > 0$, if $0 < \delta < \epsilon$, then $5 - x < \delta$ implies that $|f(x) - L| = |2 - 2| = 0 < \epsilon$. Hence $$ \displaystyle\lim_{x\rightarrow 5^-} 2 = 2 $$

In light of Theorem 1.6.2, and the fact that the right-hand and left-hand limits have the same value, we conclude that the two-sided limit exists and that the limit is also $2$.

$$ \displaystyle\lim_{x\rightarrow 5} 2 = 2 $$

Exercise 2¶

Using the Weierstrauss definition of limit, show that the limit of $f(x)=2$ as $x$ approaches $5$ is $2$.

Solution
The answer is very similar. Given an $\epsilon > 0$, if $0 < \delta < \epsilon$, then $|x-5| < \delta$ implies that $|f(x) - L| = |2 - 2| = 0 < \epsilon$. Hence $$ \displaystyle\lim_{x\rightarrow 5} 2 = 2 $$

Limits of Constant Functions¶

I hope that everyone see that the value of $5$ is not special. For a constant function and any real number $a$,

$$ \displaystyle\lim_{x\rightarrow a} 2 = 2 $$

Furthermore, the number $2$ is not special.

Theorem 1.7.1¶

For any constant function $f(x) = k$, where $k\in\mathbb{R}$, and any real number $a\in\mathbb{R}$,

$$ \displaystyle\lim_{x\rightarrow a} k = k $$


1.7.2 The Identity Function¶

Example 2¶

Show that the limit as $x$ approaches $3$ of the function $f(x)=x$ is $3$.

Solution¶

Given an $\epsilon > 0$, we need a $\delta > 0$ so that $|x-a|<\delta$ implies that $|f(x)-L|<\epsilon$. In this problem

$$ a = 3,\ L = 3,\ f(x)=x $$

This makes

$$ \begin{align*} |x-a| &= |x-3|,\ \text{and} \\ |f(x)-L| &= |x - 3| \end{align*} $$

This tells us that we can pick any number $0<\delta<\epsilon$ just like we did in the previous section! Choose $0 < \delta < \epsilon$, then $|x-3|<\delta$ implies that $|x-3|<\delta<\epsilon$.

In light of Theorem 1.6.2 we also have the left-hand and right-hand limits.

$$ \begin{align*} \displaystyle\lim_{x\rightarrow 3^+} x &= 3 \\ \\ \displaystyle\lim_{x\rightarrow 3^-} x &= 3 \end{align*} $$

As in the previous section the number $3$ in the domain is not special.

Theorem 1.7.2¶

If $a\in\mathbb{R}$ is any real number, then

$$ \displaystyle\lim_{x\rightarrow a^-} = \displaystyle\lim_{x\rightarrow a^+} = \displaystyle\lim_{x\rightarrow a} = a $$


1.7.3 Finding Limits¶

Using Theorems 1.6.1 - 1.6.5, we can now compute many, many limits.

Exercise 3¶

Compute the limit as $u$ approaches $3$ of the function $r(u) = \frac{1}{u}$.

Solution
$$ \displaystyle\lim_{u\rightarrow 3}\,\frac{1}{u} = \frac{\displaystyle\lim_{u\rightarrow 3}\,1}{\displaystyle\lim_{u\rightarrow 3}\,u} = \frac{1}{3} $$

Exercise 4¶

Show using the Weierstrauss definition limit that $\displaystyle\lim_{x\rightarrow 3} \frac{1}{u} = \frac{1}{3}$.

Solution
Given an $\epsilon > 0$, we must find a $\delta > 0$ so that $|u-3|<\delta$ implies that $$ \left|\frac{1}{u} - \frac{1}{3}\right| < \epsilon $$ In order to find our interval for $\delta$, we need to start with the result and work backwards toward our inequality $|u-3|<\delta$. $$ \begin{align*} \left|\frac{1}{u} - \frac{1}{3}\right| &< \epsilon \\ \\ \left|\frac{3}{3u} - \frac{u}{3u}\right| &< \epsilon \\ \\ \left|\frac{3 - u}{u}\right| &< 3\epsilon \\ \\ \frac{|u-3|}{|u|} &< 3\epsilon \end{align*} $$ Now this tricky. Remember that we want $|u-3|<\delta$, a really small number. This means that $$ \begin{align*} -\delta &< u-3 < \delta \\ 3-\delta &< u < 3+\delta \\ \end{align*} $$ Remember also that we want $\delta$ to be small, so how about $\delta < \epsilon$. Then $$ 3-\epsilon < 3-\delta < u < 3+\delta < 3+\epsilon $$ So we can replace the demoninator with something smaller, and the quotient will be bigger. $$ \begin{align*} \frac{|u-3|}{|u|} &< \frac{|u-3|}{3-\epsilon} < 3\epsilon \\ \\ |u-3| &< 3\epsilon(3-\epsilon) \end{align*} $$ Now we created two consitions on $\delta$: $$ \begin{align*} \delta &< \epsilon \\ \\ \delta &< 3\epsilon(3-\epsilon) \end{align*} $$ For algebra steps to work in reverse, we need both conditions to be met. So we write:
Choose $0 < \delta < \min\left\{ \epsilon,\ 3\epsilon(3-\epsilon) \right\}$. Then $|u-3|<\delta$ implies that $$ \begin{align*} |u-3| &< 3\epsilon(3-\epsilon) \\ \\ \frac{|u-3|}{|u|} &< \frac{|u-3|}{3-\epsilon} < 3\epsilon \\ \\ \frac{|u-3|}{3|u|} &< \epsilon \\ \\ \left| \frac{u-3}{3u} \right| &< \epsilon \\ \\ \left| \frac{u}{3u} - \frac{3}{3u} \right| &< \epsilon \\ \\ \left| \frac{1}{3} - \frac{1}{u} \right| &< \epsilon \\ \\ \left| \frac{1}{u} - \frac{1}{3} \right| &< \epsilon \\ \end{align*} $$ We just proved that $$ \displaystyle\lim_{u\rightarrow 3}\,\frac{1}{u} = \frac{1}{3} $$


1.7.4 Infinite Limits¶

Definition¶

The limit of a function as $x$ approaches $a$ is $+\inf$ if and only if for every large number $M>0$, there is a $\delta>0$ so that $|x-a|<\delta$ implies that $f(x) > M$.

The limit of a function as $x$ approaches $a$ is $-\inf$ if and only if for every large number $M>0$, there is a $\delta>0$ so that $|x-a|<\delta$ impies that $-f(x) > M$.

Example 3¶

Using the Weierstrauss definition of an infinite limit, show that the one-sided limit as $x$ approaches $0$ from the right of the function $f(x) = \frac{1}{x}$ is $+\infty$.

Solutions¶

Given a BIG number $M = 100$, we must find a $\delta > 0$ so that whenever $x - a < \delta$, we have that $f(x) > M$. Here

$$ a = 0,\ M=100,\ f(x) = \frac{1}{x} $$

We need to find a $\delta > 0$ small enough so that $x - 0 < \delta$ implies that $\frac{1}{x} > 100$. As before we start with the conclusion we need and work backwards

$$ \begin{align*} \frac{1}{x} &> 100 \\ \\ x &< \frac{1}{100} \\ \\ x - 0 &< \frac{1}{100} \end{align*} $$

We have our $\delta$! If we chooose $0 < \delta < \frac{1}{100}$, then $x - 0 < \delta$ implies that

$$ \begin{align*} x &< \frac{1}{100} \\ \\ \frac{1}{x} &> 100 \end{align*} $$

done!

Exercise 5¶

Use the Weierstrauss definition of an infinite limit to show that $\displaystyle\lim_{x\rightarrow 0}\frac{1}{x}$ does not exist.

Solution
To show that a two-sided limit does not exist, we need show that the limit from the right and the limit from the left are different. We already showed in Example 3, that $$ \displaystyle\lim_{x\rightarrow 0^+}\frac{1}{x} = +\infty $$
Let us find the left-hand limit. Given a real number $M > 0$, we need a $\delta > 0$ so that $0 - x < \delta$ implies that $f(x) < -M$. We already have such a $\delta$ from example 3. If we choose $0 < \delta < \frac{1}{M}$. Then $0 - x < \frac{1}{M}$ implies that
$$ \begin{align*} -x &< \frac{1}{M} \\ \\ x &> -\frac{1}{M} \\ \\ \frac{1}{x} &< -M \end{align*} $$ Since we can be given any $M$, no matter how big, we have that as $x$ approaches $0$ from the left, the function $\frac{1}{x}$ gets larger than $M$. Thus
$$ \displaystyle\lim_{x\rightarrow 0^-} \frac{1}{x} = -\infty $$
Since the right-hand limit is $+\infty$ and the left-hand limit is $-\infty$, we have that the two-side limit does not exist.

1.7.5 Application¶

Exercise 6¶

A machinist is required to manufacture a circular disk with area $1000\ \text{cm}^2$.

(a) What radius produces such a disk?

(b) If the machinist is allowed an error tolerance of $\pm\,5\ \text{cm}^2$ in the area of the disk, how close to the ideal radius from part (a)must the machinist control the radius?

(c) In terms of the $\epsilon$,$\delta$ definition of $\displaystyle\lim_{x\rightarrow a}f(x)=L$, what is $x$? What is $f(x)$? What is $a$? What is $L$? What value of $\epsilon$ is given? What is the corresponding $\delta$?

Solution
(a) Area $= 1000\ \text{cm}^2 = \pi\,r^2$, where $r$ is the radius. So $$ r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{1000}{\pi}} = 10\sqrt{\frac{10}{\pi}} \approx 17.84124 $$
(b) In this problem area $A$ is a function of the radius of the disk, $A = A(r) = \pi\,r^2$. A tolerance of $\pm\,5\ \text{cm}^2$ in area means that if our ideal area $L = 1000\ \text{cm}^2$ is the goal, and $r$ is the radius that the machinist and the lathe can make using the available materials, then $-5 < A(r) - L < 5\ \text{cm}^2$.
$$ \begin{align*} |A(r) - L| &< 5 \\ \\ \left| \pi\,r^2 - 1000 \right| &< 5 \\ \\ -5 &< \pi\,r^2 - 1000 < 5 \\ \\ 995 &< \pi\,r^2 < 1005 \\ \\ \frac{995}{\pi} &< r^2 < \frac{1005}{\pi} \\ \\ \sqrt{\frac{995}{\pi}} &< r < \sqrt{\frac{1005}{\pi}} \\ \\ 17.80 &< r < 17.89 \\ \\ 17.80 &< 17.84 < 17.89 \\ \\ -.04 &< \delta < .05 \\ \\ |\delta| &< .04 \end{align*} $$
We should check our algebra. $$ \begin{align*} A(17.80) &= \pi\,17.80^2 \approx 995.38 \\ \\ A(17.88) &= \pi\,17.88^2 \approx 1004.35 \end{align*} $$
These computations tell us that if the machinist keeps the radius within $.04\ \text{cm}$ of $17.84\ \text{cm}$, or $.4\ \text{mm}$ the ideal radius of approximately $17.84\ \text{cm}$, then the area of the disk will be between $995.38\ \text{cm}^2$ and $1004.35\ \text{cm}^2$. This means it will be with $\pm 5\ \text{cm}^2$ of the ideal area of $1000\ \text{cm}^2$.
(c) $$ \begin{align*} x &= r \\ f(x) &= A(r) = \pi\,r^2 \\ a &\approx 17.84\ \text{cm} \\ L &= 1000\ \text{cm}^2 \\ \epsilon &= 5\ \text{cm}^2 \\ \delta &= .4\ \text{mm} \end{align*} $$

Your use of this self-initiated mediated course material is subject to our An international nonprofit organization that empowers people to grow and sustain the thriving commons of shared knowledge and culture. Creative Commons License 4.0