We already learned the usefulness of polar coordinates when integrating over a domain with circular symmetry. The new coordinate system $\langle r,\theta \rangle$ are related to the old coordinates $\langle x,y \rangle$ by the system of equations
$$
\require{color}
\definecolor{brightblue}{rgb}{.267, .298, .812}
\definecolor{darkblue}{rgb}{.08, .18, .28}
\definecolor{palepink}{rgb}{1, .73, .8}
\definecolor{softmagenta}{rgb}{.99,.34,.86}
\def\ihat{\mathbf{\hat{\mmlToken{mi}[mathvariant="bold"]{ı}}}}
\def\jhat{\mathbf{\hat{\mmlToken{mi}[mathvariant="bold"]{ȷ}}}}
\def\khat{\mathbf{\hat{k}}}
\newcommand{\pypx}[2][x]{\dfrac{\partial #2}{\partial #1}}
\newcommand{\dydx}[2][x]{\dfrac{d #2}{d #1}}
\newcommand{\deltax}[2][x]{\frac{\Delta #2}{\Delta #1}}
\begin{align*}
x &= r\cos(\theta) \\
y &= r\sin(\theta)
\end{align*}
$$
Recall from
Section 14.4
that we derived the equation for the tangent plane
$$
\Delta z = \frac{\partial z}{\partial x}\Delta x + \frac{\partial z}{\partial y}\Delta y
$$
or
$$
\begin{align*}
\Delta x &= \frac{\partial x}{\partial r}\,\Delta r + \frac{\partial x}{\partial\theta}\,\Delta\theta \\
\Delta y &= \frac{\partial y}{\partial r}\,\Delta r + \frac{\partial y}{\partial\theta}\,\Delta\theta
\end{align*}
$$
From this we obtain the linear equation
$$
\begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial\theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial\theta} \end{bmatrix}\,\begin{bmatrix} \Delta r \\ \Delta\theta \end{bmatrix}
$$
or
$$
\begin{bmatrix} \frac{\partial z}{\partial x} \\ \frac{\partial z}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial\theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial\theta} \end{bmatrix}\,\begin{bmatrix} \frac{\partial z}{dr} \\ \frac{\partial z}{\partial \theta} \end{bmatrix}
$$
In linear algebra this is the
transition matrix
from one coordinate system in the tangent space with basis vectors $\left\{ \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \right\}$ to the tangent space with basis vectors $\left\{ \frac{\partial z}{\partial\theta}, \frac{\partial z}{\partial r} \right\}$. The
determinate
of matrix $S$ is defined to be the
change in scale
introduced by this
change of coordinates
.
If we have a region $R$ in the tangent space with area $A$ described in rectangular coordinates, then the same area would be det$(S)$ times the area computed using equivalent polar coordinates.
This scaling factor is called the Jacobian the determinant of the transition matrix $S$. Recall that the determinant is signed .
- A positive determinant means that the orientation of the surface is unchanged.
- A negative determinant means that the orientation of the surface has been reversed or flipped .
Computing the determinate we have that the Jacobian $J$ is given by
$$
\begin{align*}
J &= \left|S\right| = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial\theta} & \frac{\partial y}{\partial\theta} \end{vmatrix} \\
\\
&= \begin{vmatrix} \cos(\theta) & \sin(\theta) \\ -r\sin(\theta) & r\cos(\theta) \end{vmatrix} \\
\\
&= r\cos^2(\theta) + r\sin^2(\theta) = r\\
\end{align*}
$$
For our double integral, we do not need the sign of the determinant. In fact we are only concerned with the scaling factor, not the orientation. Hence we have that the scaling factor using in our double integral is the absolute value of the Jacobian. Since in polar coordinates the magnitude $r$ is always greater than or equal to zero we have $|r| = r$ and
$$
\displaystyle\iint_D f(x,y)\,dA = \displaystyle\iint_D f(r\cos(\theta),r\sin(\theta)\,r\,dr\,d\theta
$$
We denote the Jacobian using similar to the chain rule to remind us of the similarity
$$
J = \frac{\partial(x,y)}{\partial(r,\theta)}
$$
so that
$$
\begin{align*}
\displaystyle\iint_D f(x,y)\,dA &= \displaystyle\iint_D f(r\cos(\theta),r\sin(\theta)\,\left|J\right|\,dr\,d\theta \\
\\
&= \displaystyle\iint_D f(r\cos(\theta),r\sin(\theta)\,\left|\frac{\partial(x,y)}{\partial(r,\theta)}\right|\,dr\,d\theta
\end{align*}
$$
Consider the function $f:\mathbb{R}^2\mapsto\mathbb{R}$ given by $f(x,y) = 1 - x^2 - y^2$. In polar coordinates we can describe this function
$$
f(x,y) = 1 - x^2 - y^2 = 1 - r^2 = f(r\cos(\theta), r\sin(\theta)) = g(r,\theta)
$$
Here function $g = f$ for every vector $\langle x, y\rangle$ in $\mathbb{R}^2$. The
change in coordinates
is the only difference between these two maps $f$ and $g$ that represent the
same function
with respect to different coordinate systems.
Likewise given the change of variables from rectangular coordinates $\langle\,x,y,z\,\rangle$ to spherical coordinates $\langle\,\rho,\theta,\phi\,\rangle$.
$$
\begin{align*}
x &= \rho\cos(\theta)\sin(\phi) \\
y &= \rho\sin(\theta)\sin(\phi) \\
z &= \rho\cos(\phi)
\end{align*}
$$
We may compute the Jacobian
$$
\begin{align*}
J &= \begin{vmatrix} \frac{\partial x}{\partial\rho} & \frac{\partial x}{\partial\theta} & \frac{\partial x}{\partial\phi} \\ \frac{\partial y}{\partial\rho} & \frac{\partial y}{\partial\theta} & \frac{\partial y}{\partial\phi} \\ \frac{\partial z}{\partial\rho} & \frac{\partial z}{\partial\theta} & \frac{\partial z}{\partial\phi} \end{vmatrix} = \begin{vmatrix} \cos(\theta)\sin(\phi) & -\rho\sin(\theta)\sin(\phi) & \rho\cos(\theta)\cos(\phi) \\ \sin(\theta)\sin(\phi) & \rho\cos(\theta)\sin(\phi) & \rho\sin(\theta)\cos(\phi) \\ \cos(\phi) & 0 & -\rho\sin(\phi) \end{vmatrix} \\
\\
&= \cos(\phi)\begin{vmatrix} -\rho\sin(\theta)\sin(\phi) & \rho\cos(\theta)\cos(\phi) \\ \rho\cos(\theta)\sin(\phi) & \rho\sin(\theta)\cos(\phi) \end{vmatrix} - 0 \\
\\
&\ \qquad\qquad\qquad - \rho\sin(\phi)\begin{vmatrix} \cos(\theta)\sin(\phi) & -\rho\sin(\theta)\sin(\phi) \\ \sin(\theta)\sin(\phi) & \rho\cos(\theta)\sin(\phi) \end{vmatrix} \\
\\
&= \rho^2\sin(\phi)\cos^2(\phi)\begin{vmatrix} -\sin(\theta) & \cos(\theta) \\ \cos(\theta) & \sin(\theta) \end{vmatrix} - \rho^2\sin^3(\phi)\begin{vmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{vmatrix} \\
\\
&= \rho^2\sin(\phi)\cos^2(\phi)(-1) - \rho^2\sin^3(\phi)(1) \\
\\
&= -\rho^2\sin(\phi)\left(\cos^2(\phi) + \sin^2(\phi)\right) = -\rho^2\sin(\phi)
\end{align*}
$$
In our triple integral, we utilize the absolute value of the Jacobian
$$
|J| = \left|\frac{\partial(x,y,z)}{\partial(\rho,\theta,\phi)}\right| = \rho^2\sin(\phi)
$$
The last equality because $\rho^2\ge 0$ and the sine function is also nonnegative on the interval $[0,\pi]$.
First try each example or exercise on your own before looking at the solution.
Convert the vector in rectangular coordinates $\left\langle 6,\,\frac{\pi}{3},\,\frac{\pi}{6}\right\rangle$ to spherical coordinates.
Find the spherical coordinates of the vector $\left\langle 0, 2\sqrt{3}, 2 \right\rangle$ in rectangular coordinates.
Compute the volume of the solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$.
Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Attribution
You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Noncommercial
You may not use the material for commercial purposes.
Share Alike
You are free to share, copy and redistribute the material in any medium or format. If you adapt, remix, transform, or build upon the material, you must distribute your contributions under the
same license
as the original.