Wichita State University Logo

Math 511: Linear Algebra

Stochastic Matrices


Stochastic Matrices¶

$$ \require{color} \definecolor{brightblue}{rgb}{.267, .298, .812} \definecolor{darkblue}{rgb}{0.0, 0.0, 1.0} \definecolor{palepink}{rgb}{1, .73, .8} \definecolor{softmagenta}{rgb}{.99,.34,.86} \definecolor{blueviolet}{rgb}{.537,.192,.937} \definecolor{jonquil}{rgb}{.949,.792,.098} \definecolor{shockingpink}{rgb}{1, 0, .741} \definecolor{royalblue}{rgb}{0, .341, .914} \definecolor{alien}{rgb}{.529,.914,.067} \definecolor{crimson}{rgb}{1, .094, .271} \def\ihat{\mathbf{\hat{\unicode{x0131}}}} \def\jhat{\mathbf{\hat{\unicode{x0237}}}} \def\khat{\mathrm{\hat{k}}} \def\tombstone{\unicode{x220E}} \def\contradiction{\unicode{x2A33}} $$

Two companies offer satellite television service to a city. Figure 1 shows the changes in satellite subscriptions each year. The numbers show the portions of the total population of the city.


Three plots of a linear system of two equations on the plane.
Figure 1

The transition probabilities matrix for the consumer preference model is given by

$$ \begin{align*} &\ \begin{array}{ccc} \quad\ \ \ {\color{red}\text{A}} & \ \ \ \ {\color{red}\text{B}} & \ \ {\color{red}\text{None}} \end{array} \\ P &= \begin{bmatrix} 0.70 & 0.15 & 0.15 \\ 0.20 & 0.80 & 0.15 \\ 0.10 & 0.05 & 0.70 \end{bmatrix} \begin{array}{l} {\color{red} \text{A}} \\ {\color{red} \text{B}} \\ {\color{red} \text{None}} \end{array} \end{align*} $$

The states are

  • Subscribing to Company A
  • Subscribing to Company B
  • No Satellite Television subscription

The initial state vector representing the portions of the total population in each of the three states is

$$ X_0 = \begin{bmatrix} 0.1500 \\ 0.2000 \\ 0.6500 \end{bmatrix} \begin{array}{c} {\color{red} \text{Company A}} \\ {\color{red} \text{Company B}} \\ {\color{red} \text{None}} \end{array} $$

To find the state vector representing the portions of the total population in each state in one year, multiply $P$ by $X_0$ to obtain

$$ X_1 = PX_0 = \begin{bmatrix} 0.70 & 0.15 & 0.15 \\ 0.20 & 0.80 & 0.15 \\ 0.10 & 0.05 & 0.70 \end{bmatrix}\begin{bmatrix} 0.1500 \\ 0.2000 \\ 0.6500 \end{bmatrix} = \begin{bmatrix} 0.2325 \\ 0.2875 \\ 0.4800 \end{bmatrix} $$

After 15 years, the state vector had nearly reached the steady state.

$$ X_{15} = P^{15}X_0 = \begin{bmatrix} 0.3333 \\ 0.4756 \\ 0.1911 \end{bmatrix} $$

For large positive integers $n$, the product $P^nX_0$ reaches a limit $\overline{X}$,

$$ \begin{align*} \overline{X} &= \displaystyle\lim_{n\rightarrow\infty} P^nX_0 \\ P\overline{X} &= \overline{X} = 1\overline{X} \end{align*} $$

For this reason 1 is called an eigenvalue of matrix $P$ with corresponding eigenvector $\overline{X}$.


The eigenvalues and eigenvectors computed in Octave
Figure 2

1.¶

Use a software program like GeoGebra, WolframAlpha, Octave, or MATLAB to compute the eigenvalues and eigenvectors of $P$. We will learn at the end of the course that any nonzero scalar multiple of an eigenvector is also an eigenvector so we have

$$ \begin{array}{lll} {\color{red}\text{Eigenvalue}} & \qquad\qquad{\color{red}\text{Eigenvector}} & \qquad\qquad\qquad\qquad\qquad \end{array} \\ \begin{align*} \lambda_1 &= 1,\qquad \mathbf{x}_1 = \frac{4}{-3.1140e-01}\begin{bmatrix} -5.4495e-01 \\ -7.7850e-01 \\ -3.1140e-01 \end{bmatrix} = \begin{bmatrix} 7 \\ 10 \\ 4 \end{bmatrix} \\ \\ \lambda_2 &= 0.65,\quad \mathbf{x}_2 = \frac{1}{\ \ 7.0771e-01} \begin{bmatrix} 4.9776e-16 \\ -7.0771e-01 \\ 7.0771e-01 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \\ \\ \lambda_3 &= 0.55,\quad \mathbf{x}_3 = \frac{1}{\ \ 4.0825e-01} \begin{bmatrix} -8.1650e-01 \\ 4.0825e-01 \\ 4.0825e-01 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \\ \end{align*} $$

Show by computing the products that for $i=1,2,3$, $P\mathbf{x}_i = \lambda_i\mathbf{x}_i$.

2.¶

Let $S$ be the matrix whose columns are the simple eigenvectors of $P$. Show by computing the product that $S^{-1}PS$ is a diagonal matrix $D$. What are the entries along the diagonal of $D$?

3.¶

Show that $P^n = (SDS^{-1})^n = SD^nS^{-1}$. Use this to calculate $X_{15}$ using $D$ and verify the result in the introduction.