Wichita State University Logo

Math 511: Linear Algebra

Solutions of Linear Systems


Solutions of Linear Systems¶

$$ \require{color} \definecolor{brightblue}{rgb}{.267, .298, .812} \definecolor{darkblue}{rgb}{0.0, 0.0, 1.0} \definecolor{palepink}{rgb}{1, .73, .8} \definecolor{softmagenta}{rgb}{.99,.34,.86} \definecolor{blueviolet}{rgb}{.537,.192,.937} \definecolor{jonquil}{rgb}{.949,.792,.098} \definecolor{shockingpink}{rgb}{1, 0, .741} \definecolor{royalblue}{rgb}{0, .341, .914} \definecolor{alien}{rgb}{.529,.914,.067} \definecolor{crimson}{rgb}{1, .094, .271} \def\ihat{\mathbf{\hat{\unicode{x0131}}}} \def\jhat{\mathbf{\hat{\unicode{x0237}}}} \def\khat{\mathrm{\hat{k}}} \def\tombstone{\unicode{x220E}} \def\contradiction{\unicode{x2A33}} $$

Write a paragraph to answer each question. Do not perform any calculations, but instead base your explanations on appropriate properties from the course.

1. One Solution of the homogeneous linear system¶


$$ \begin{align*} x + 2y + z + 3w &= 0 \\ x -\ y\ \ \ \ \ \ \ +\ \ w &= 0 \\ y - z + 2w &= 0 \end{align*} $$
is the vector $\begin{bmatrix} -2 \\ -1 \\ \ \ 1 \\ \ \ 1 \end{bmatrix}$. Explain why $\begin{bmatrix}\ \ 4 \\ \ \ 2 \\ -2 \\ -2 \end{bmatrix}$ is also a solution.

2. The vectors $\mathbf{x}_1$ and $\mathbf{x}_2$ are solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. Explain why the vector $2\mathbf{x}_1 - 3\mathbf{x}_2$ is also a solution.¶

3. Consider the two linear systems represented by the augmented matrices¶


$$ \begin{bmatrix} 1 &\ \ 1 & -5 &\ \ 3 \\ 1 &\ \ 0 & -2 &\ \ 1 \\ 2 & -1 & -1 &\ \ 0 \end{bmatrix},\ \begin{bmatrix} 1 &\ \ 1 & -5 & -9 \\ 1 &\ \ 0 & -2 & -3 \\ 2 & -1 & -1 &\ \ 0 \end{bmatrix} $$
If the first system is consistent, explain why the second system is also consistent.

4. The vectors $\mathbf{x}_1$ and $\mathbf{x}_2$ are solutions to the linear system $A\mathbf{x} = \mathbf{b}$. Is the vector $2\mathbf{x}_1 - 3\mathbf{x}_2$ also a solution? Explain your answer.¶

5. The linear system $A\mathbf{x} = \mathbf{b}_1$ and $A\mathbf{x} = \mathbf{b}_2$ are consistent. Is the system $A\mathbf{x} = \mathbf{b}_1 + \mathbf{b}_2$ necessarily consistent? Explain your answer.¶