Math 511: Linear Algebra
Direct Sum
Direct Sum¶
$$ \require{color} \definecolor{brightblue}{rgb}{.267, .298, .812} \definecolor{darkblue}{rgb}{0.0, 0.0, 1.0} \definecolor{palepink}{rgb}{1, .73, .8} \definecolor{softmagenta}{rgb}{.99,.34,.86} \definecolor{blueviolet}{rgb}{.537,.192,.937} \definecolor{jonquil}{rgb}{.949,.792,.098} \definecolor{shockingpink}{rgb}{1, 0, .741} \definecolor{royalblue}{rgb}{0, .341, .914} \definecolor{alien}{rgb}{.529,.914,.067} \definecolor{crimson}{rgb}{1, .094, .271} \def\ihat{\mathbf{\hat{\unicode{x0131}}}} \def\jhat{\mathbf{\hat{\unicode{x0237}}}} \def\khat{\mathrm{\hat{k}}} \def\tombstone{\unicode{x220E}} \def\contradiction{\unicode{x2A33}} $$
You will explore the sum and direct sum of vector spaces.
1. Consider the subspaces of $V = \mathbb{R}^3$ below,¶
$$ \begin{align*} U &= \left\{ \langle x,y,x-y\rangle\,:\,x,y\in\mathbb{R}\right\} \\ \\ W &= \left\{ \langle x,0,x\rangle\,:\,x\in\mathbb{R}\right\} \\ \\ Z &= \left\{ \langle x,x,x \rangle\,:\,x\in\mathbb{R}\right\} \end{align*} $$
Find $U + W$, $U + Z$, and $W + Z$.
2. Direct Sums¶
(a) Prove the following theorem,
Theorem¶
If $U$ and $W$ are subspaces of vector space $V$ such that $V = U + W$ and $U\cap W=\left\{\mathbf{0}\right\}$, then prove that every vector in $V$ has a unique representation of the form $\mathbf{u}+\mathbf{w}$, where $\mathbf{u}\in U$ and $\mathbf{w}\in W$. $V$ is called the direct sum of $U$ and $W$, and is written $V = U\oplus W$.
(b) Which of the sums in problem 1 are direct sums?
3. Prove the following theorem,¶
Theorem¶
Let vector space $V = U\oplus W$ be the direct sum of two subspaces $U$ and $W$, and let $\left\{ \mathbf{u}_1,\ \mathbf{u}_2,\dots,\mathbf{u}_k\right\}$ be a basis for $U$ and $\left\{\mathbf{w}_1,\ \mathbf{w}_2,\dots,\mathbf{w}_m\right\}$ be a basis for $W$. Prove that the set $S = \left\{\mathbf{u}_1,\ \mathbf{u}_2,\dots,\mathbf{u}_k,\ \mathbf{w}_1,\ \mathbf{w}_2,\dots,\mathbf{w}_m\right\}$ is a basis for $V$.
4. Consider the subspaces $U = \left\{\langle x,0,y\rangle\,:\,x,y,\in\mathbb{R}\right\}$ and $W = \left\{\langle 0,x,y \rangle\,:\,x,y\in\mathbb{R}\right\}$ of $V=\mathbb{R}^3$.¶
(a) Is $\mathbb{R}^3$ a direct sum of $U$ and $W$?
(b) What are the dimensions of $U$, $W$, $U\cap W$ and $U + W$?
(c) Formulate a conjecture that relates the dimensions of $U$, $W$, $U\cap W$, and $U+W$.
5. Do there exist two two-dimensional subspaces of $\mathbb{R}^3$ whose intersection is the zero vector? Why or why not?¶
Your use of this self-initiated mediated course material is subject to our Creative Commons License 4.0