Math 511: Linear Algebra
QR Factorization
$$ \require{color} \definecolor{brightblue}{rgb}{.267, .298, .812} \definecolor{darkblue}{rgb}{0.0, 0.0, 1.0} \definecolor{palepink}{rgb}{1, .73, .8} \definecolor{softmagenta}{rgb}{.99,.34,.86} \definecolor{blueviolet}{rgb}{.537,.192,.937} \definecolor{jonquil}{rgb}{.949,.792,.098} \definecolor{shockingpink}{rgb}{1, 0, .741} \definecolor{royalblue}{rgb}{0, .341, .914} \definecolor{alien}{rgb}{.529,.914,.067} \definecolor{crimson}{rgb}{1, .094, .271} \def\ihat{\mathbf{\hat{\unicode{x0131}}}} \def\jhat{\mathbf{\hat{\unicode{x0237}}}} \def\khat{\mathrm{\hat{k}}} \def\tombstone{\unicode{x220E}} \def\contradiction{\unicode{x2A33}} $$
1. Find the QR Factorization of each matrix.¶
(a) $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$
(b) $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
2. Let $A=QR$ be the QR-Factorization of the $m\times n$ matrix $A$ of rank $n$. Show how the least squares problem can be solved using the QR-Factorization.¶
3. Use the result of part 2 to solve the least squares problem¶
$A\mathbf{x} = \mathbf{b}$ when $A$ is the matrix from 1.(a) and $\mathbf{b} = \begin{bmatrix}-1\ \\ \ \ 1\ \\ -1 \end{bmatrix}$.
Your use of this self-initiated mediated course material is subject to our Creative Commons License 4.0