Wichita State University Logo

Math 511: Linear Algebra

QR Factorization


$$ \require{color} \definecolor{brightblue}{rgb}{.267, .298, .812} \definecolor{darkblue}{rgb}{0.0, 0.0, 1.0} \definecolor{palepink}{rgb}{1, .73, .8} \definecolor{softmagenta}{rgb}{.99,.34,.86} \definecolor{blueviolet}{rgb}{.537,.192,.937} \definecolor{jonquil}{rgb}{.949,.792,.098} \definecolor{shockingpink}{rgb}{1, 0, .741} \definecolor{royalblue}{rgb}{0, .341, .914} \definecolor{alien}{rgb}{.529,.914,.067} \definecolor{crimson}{rgb}{1, .094, .271} \def\ihat{\mathbf{\hat{\unicode{x0131}}}} \def\jhat{\mathbf{\hat{\unicode{x0237}}}} \def\khat{\mathrm{\hat{k}}} \def\tombstone{\unicode{x220E}} \def\contradiction{\unicode{x2A33}} $$

1. Find the QR Factorization of each matrix.¶

(a) $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$

(b) $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$

(c) $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$


2. Let $A=QR$ be the QR-Factorization of the $m\times n$ matrix $A$ of rank $n$. Show how the least squares problem can be solved using the QR-Factorization.¶


3. Use the result of part 2 to solve the least squares problem¶

$A\mathbf{x} = \mathbf{b}$ when $A$ is the matrix from 1.(a) and $\mathbf{b} = \begin{bmatrix}-1\ \\ \ \ 1\ \\ -1 \end{bmatrix}$.


Your use of this self-initiated mediated course material is subject to our An international nonprofit organization that empowers people to grow and sustain the thriving commons of shared knowledge and culture. Creative Commons License 4.0