Wichita State University Logo

Math 511: Linear Algebra

6.4 Similar Matrices


6.4.1 Change of Basis¶

$$ \require{color} \definecolor{brightblue}{rgb}{.267, .298, .812} \definecolor{darkblue}{rgb}{0.0, 0.0, 1.0} \definecolor{palepink}{rgb}{1, .73, .8} \definecolor{softmagenta}{rgb}{.99,.34,.86} \definecolor{blueviolet}{rgb}{.537,.192,.937} \definecolor{jonquil}{rgb}{.949,.792,.098} \definecolor{shockingpink}{rgb}{1, 0, .741} \definecolor{royalblue}{rgb}{0, .341, .914} \definecolor{alien}{rgb}{.529,.914,.067} \definecolor{crimson}{rgb}{1, .094, .271} \def\ihat{\mathbf{\hat{\unicode{x0131}}}} \def\jhat{\mathbf{\hat{\unicode{x0237}}}} \def\khat{\mathrm{\hat{k}}} \def\tombstone{\unicode{x220E}} \def\contradiction{\unicode{x2A33}} $$

Similar matrices represent the same linear transformation on $\mathbb{R}^n$, however with respect to a different choice of basis for both the domain and codomain. This is an important aspect of similar matrices:

Although similar matrices are typically made up of a different array of numbers, they represent the same linear transformation.

Now might be a good time to review A video explaining change of basis for a vector space. Change of basis


6.4.2 Similarity¶

Borrowing the example from the Grant Sanderson's A video explaining change of basis for a vector space. video, suppose we have a linear operator on $\mathbb{R}^2$ given by

$$ L(\mathbf{x}) = \left[ \begin{array}{r} -x_2 \\ x_1 \end{array} \right] $$

The operator's effect on the standard basis in $\mathbb{R}^2$ $\left\{\mathbf{e}_1,\mathbf{e}_2\right\}$ is

$$ L(\mathbf{e}_1) = \left[ \begin{array}{r} 0 \\ 1 \end{array} \right] \qquad\qquad L(\mathbf{e}_2) = \left[ \begin{array}{r} -1 \\ 0 \end{array} \right] $$

so its matrix representation with respect to the standard basis is given by

$$ A = \left[ \begin{array}{r} 0 & -1 \\ 1 & 0 \end{array} \right] $$

The question is what happens if we want to represent $L$ with respect to a different basis, say

$$ \mathbf{u}_1 = \left[ \begin{array}{r} 2 \\ 1 \end{array} \right] \qquad\qquad \mathbf{u}_2 = \left[ \begin{array}{r} -1 \\ 1 \end{array} \right] $$

Since $A$ represents the linear operator $L$ with respect to the standard basis, we may use $A$ to compute $L(\mathbf{u}_1)$ and $L(\mathbf{u}_2)$:

$$ \begin{align*} L(\mathbf{u}_1) &= A\mathbf{u}_1 = \left[ \begin{array}{r} 0 & -1 \\ 1 & 0 \end{array} \right]\left[ \begin{array}{r} \ \ \, 2 \\ 1 \end{array} \right] = \left[ \begin{array}{r} -1 \\ 2 \end{array} \right] \\ \\ L(\mathbf{u}_2) &= A\mathbf{u}_2 = \left[ \begin{array}{r} 0 & -1 \\ 1 & 0 \end{array} \right]\left[ \begin{array}{r} -1 \\ 1 \end{array} \right] = \left[ \begin{array}{r} 1 \\ -1 \end{array} \right] \end{align*} $$

The transition matrix from $\left\{\mathbf{u}_1,\mathbf{u}_2\right\}$ to the standard basis $\left\{\mathbf{e}_1,\mathbf{e}_2\right\}$ is given by

$$ U = \left[ \begin{array}{rr} 2 & 1 \\ -1 & 1 \end{array} \right] $$

and we compute its inverse $U^{-1}$ to find the transition matrix from $\left\{\mathbf{e}_1,\mathbf{e}_2\right\}$ to $\left\{\mathbf{u}_1,\mathbf{u}_2\right\}$

$$ U^{-1} = \left[ \begin{array}{rr} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{array} \right] $$

To find our operator $L$ with respect to $\left\{\mathbf{u}_1,\mathbf{u}_2\right\}$, we multiply our previous results by $U^{-1}$

$$ \begin{align*} U^{-1}L(\mathbf{u}_1) &= U^{-1}A\mathbf{u}_1 = \left[ \begin{array}{rr} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{array} \right]\left[ \begin{array}{r} -1 \\ 2 \end{array}\right] = \left[ \begin{array}{r} \frac{1}{3} \\ \frac{5}{3} \end{array} \right] \\ \\ U^{-1}L(\mathbf{u}_2) &= U^{-1}A\mathbf{u}_2 = \left[ \begin{array}{rr} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{array} \right]\left[ \begin{array}{r} 1 \\ -1 \end{array}\right] = \left[ \begin{array}{r} 0 \\ -1 \end{array} \right] \end{align*} $$

Hence,

$$ \begin{align*} L(\mathbf{u}_1) &= \frac{1}{3}\mathbf{u}_1 + \frac{5}{3}\mathbf{u}_2 \\ \\ L(\mathbf{u}_2) &= \ 0\ \mathbf{u}_1 - 1\ \mathbf{u}_2 \end{align*} $$

and the matrix representation of $L$ with respect to $\left\{\mathbf{u}_1,\mathbf{u}_2\right\}$ is

$$ B = \left[ \begin{array}{rr} \frac{1}{3} & 0 \\ \frac{5}{3} & -1 \end{array} \right] $$

What we want to determine now is the relationship between matrices $A$ and $B$. Since the columns of $B$ are

$$ \left[ \begin{array}{r} \frac{1}{3} \\ \frac{5}{3} \end{array} \right] = U^{-1}A\mathbf{u}_1 \qquad\qquad \left[ \begin{array}{r} 0 \\ -1 \end{array} \right] = U^{-1}A\mathbf{u}_2 $$

we have that

$$ B = \left[\ U^{-1}A\mathbf{u}_1\ U^{-1}A\mathbf{u}_2\ \right] = U^{-1}A\left[ \ \mathbf{u}_1\ \mathbf{u}_2\ \right] = U^{-1}AU $$

This relates $B$ to $A$ where

(i) $B$ is the matrix representing linear operator $L$ with respect to $\left\{\mathbf{u}_1,\mathbf{u}_2\right\}$

(ii) $A$ is the matrix representing linear operator $L$ with respect to $\left\{\mathbf{e}_1,\mathbf{e}_2\right\}$

(iii) $U$ is the transition matrix for a change of basis from $\left\{\mathbf{u}_1,\mathbf{u}_2\right\}$ to $\left\{\mathbf{e}_1,\mathbf{e}_2\right\}$

In general, we say that $A$ and $B$ are similar matrices.

Definition of Similarity¶

The matrices $A,B\in\mathbb{R}^n$ are similar if there exists a nonsingular matrix $\ U$ such that

$$ B = U^{-1}AU $$

Note that this relation works in both directions since it follows immediately that

$$ B = U^{-1}AU $$

implies

$$ A = \left(U^{-1}\right)^{-1}BU^{-1} = UBU^{-1} $$

The Main Idea¶

  1. Choosing a different ordered basis for a vector space is choosing a different coordinate system.

  2. Similar matrices represent the same linear transformation on a vector space, expressed with respect to different choices for coordinates.

6.4.3 Main Theorem¶

Theorem 6.5.1¶

Matrix Representations of a Linear Operator With Respect to Different Bases are Similar

Let $E = \left\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\right\}$ and $F = \left\{\mathbf{w}_1,\mathbf{w}_2,\ldots,\mathbf{w}_n\right\}$ be ordered bases on a vector space $V$, $L$ be a linear operator on $V$, and $S$ be the transition matrix from bases $F$ to $E$. If $A$ is the matrix representing $L$ with respect to $E$ and $B$ is the matrix representing $L$ with respect to $F$, then $A$ is similar to $B$, so

$$ B = S^{-1}AS $$

Proof:¶

Let $\mathbf{x}\in\mathbb{R}^n$ be arbitrary vector in vector space $V$. Vector $\mathbf{x}$ can be represented in the standard coordinate system

$$ \mathbf{x} = x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \ldots + x_n\mathbf{e}_n $$

Vector $\mathbf{x}$ can also be represented in "Jennifer's Language", that is using the $E$ basis as

$$ \mathbf{x} = \chi_1\mathbf{v}_1 + \chi_2\mathbf{v}_2 + \ldots + \chi_n\mathbf{v}_n = \begin{bmatrix}\mathbf{x}\end{bmatrix}_E $$

Finally vector $\mathbf{x}$ can be represented using "Bob's Language", that is using the $F$ basis

$$ \mathbf{x} = \xi_1\mathbf{w}_1 + \xi_2\mathbf{w}_2 + \ldots + \xi_n\mathbf{w}_n = \begin{bmatrix}\mathbf{x}\end{bmatrix}_F $$

Let us define vector $\mathbf{y}$ so that $\mathbf{y} = L(\mathbf{x})$. In our notation we write the vector and its representation in standard coordinates the same. However, since $A$ is the representation of $L$ with respect to basis $E$ we have

$$ \begin{bmatrix}\mathbf{y}\end{bmatrix}_E = A\begin{bmatrix}\mathbf{x}\end{bmatrix}_E = \begin{bmatrix} L(\mathbf{x}) \end{bmatrix}_E $$

Likewse $B$ is the representation of $L$ with respect to $F$,

$$ \begin{bmatrix}\mathbf{y}\end{bmatrix}_F = B\begin{bmatrix}\mathbf{x}\end{bmatrix}_F = \begin{bmatrix} L(\mathbf{x}) \end{bmatrix}_F $$

Matrix $S$ is the transition matrix from $F$ to $E$, so

$$ \begin{align*} \begin{bmatrix}\mathbf{x}\end{bmatrix}_E &= S\begin{bmatrix}\mathbf{x}\end{bmatrix}_F \\ \\ A\begin{bmatrix}\mathbf{x}\end{bmatrix}_E &= A\left(S\begin{bmatrix}\mathbf{x}\end{bmatrix}_F\right) = \left(AS\right)\begin{bmatrix}\mathbf{x}\end{bmatrix}_F \\ \\ \begin{bmatrix}\mathbf{y}\end{bmatrix}_E &= \left(AS\right)\begin{bmatrix}\mathbf{x}\end{bmatrix}_F \\ \\ \begin{bmatrix}\mathbf{y}\end{bmatrix}_F &= S^{-1}\begin{bmatrix}\mathbf{y}\end{bmatrix}_E \\ \\ \begin{bmatrix}\mathbf{y}\end{bmatrix}_F &= S^{-1}\left[ \left(AS\right)\begin{bmatrix}\mathbf{x}\end{bmatrix}_F\right] = \left(S^{-1}AS\right)\begin{bmatrix}\mathbf{x}\end{bmatrix}_F \\ \\ B\begin{bmatrix}\mathbf{x}\end{bmatrix}_F &= \left(S^{-1}AS\right)\begin{bmatrix}\mathbf{x}\end{bmatrix}_F \end{align*} $$

Since vector $\mathbf{x}\in V$ was chosen arbitrarily, the last equation holds for all vectors in vector space $V$. Hence

$$ B = S^{-1}AS $$

A commutative diagram showing the relationship between a matrix A and a similar matrix B through the use of the transition matrices between bases. $\tombstone$

Linear Transformation as an Operator¶

This theorem may also be thought of in terms of the linear operator $L$ and transition operators with respect to $E$ and $F$. If we denote the transition operator from basis $F$ to basis $E$ represented by matrix $S$ using $S_{FE}$, then

$$ L = S_{FE}^{-1}\circ L\circ S_{FE} $$

A commutative diagram showing the relationship between identity operations between bases E and F and the linear operator L.

6.4.4 Exercises¶

Exercise 1¶

Let $L$ be a linear operator on $\mathbb{R}^3$ given by

$$ L(\mathbf{x}) = \begin{bmatrix} 2 x_1 - x_2 -x_3 \\ 2 x_2 - x_1 - x_3 \\ 2x_3 - x_1 - x_2 \end{bmatrix} $$

and $A$ be the matrix representation of $L$ with respect to the standard basis. If

$$ \mathbf{u}_1 = \left[\begin{array}{r} 1 \\ 1 \\ 0 \end{array}\right]\qquad \mathbf{u}_2 = \left[\begin{array}{r} 1 \\ 0 \\ 1 \end{array}\right]\qquad \mathbf{u}_3 = \left[\begin{array}{r} 0 \\ 1 \\ 1 \end{array}\right] $$

then $\left\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\right\}$ is an ordered basis for $\mathbb{R}^3$ and $U = \left[\ \mathbf{u}_1\ \mathbf{u}_2\ \mathbf{u}_3\ \right]$ is the transition matrix from $\left\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\right\}$ to the standard basis in $\mathbb{R}^3$. Determine the matrix representation $B$ of $L$ with respect to $\left\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\right\}$ by computing $U^{-1}AU$.

Check Your Work

$$ B = \left[\begin{array}{rrr} 2 & -1 & -1\\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right] $$

Follow Along
The transition matrix from $\left\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\right\}$ to the standard basis is
$$ U = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right] $$
We need to find the inverse of this matrix, so we construct the augmented matrix $\left[\ U\ |\ I\ \right]$ and perform row operations until we have $\left[\ I\ |\ U^{-1}\ \right]$
$$ \left[\ \begin{array}{rrr|rrr} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\ \right] $$
and place it into reduced row echelon form.

$$ \begin{align*} \left[\ \begin{array}{rrr|rrr} 1 & 1 & 0 & \ \ \,1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\ \right]& \begin{array}{l} \ \\ -R_1 + R_2 \\ \ \end{array} \\ \\ \left[\ \begin{array}{rrr|rrr} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\ \right]& \begin{array}{l} \ \\ \ \ \,R_2 + R_3 \\ \ \end{array} \\ \\ \left[\ \begin{array}{rrr|rrr} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 2 & -1 & 1 & 1\end{array}\ \right]& \begin{array}{l} \ \\ \ \\ \frac{1}{2}R_3 \end{array} \\ \\ \left[\ \begin{array}{rrr|rrr} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\ \right]& \begin{array}{l} \ \\ -R_3 + R_2 \\ \ \end{array} \\ \\ \left[\ \begin{array}{rrr|rrr} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\ \right]& \begin{array}{l} \ \\ -R_2 \\ \ \end{array} \\ \\ \left[\ \begin{array}{rrr|rrr} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\ \right]& \begin{array}{l} -R_2 \\ \ \\ \ \end{array} \\ \\ \left[\ \begin{array}{rrr|rrr} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\ \right]& \end{align*} $$
Hence, the matrix $U^{-1}$ is given by
$$ U^{-1} = \left[\begin{array}{rrr} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \end{array} \right] $$
and $B$ may be found by performing the matrix multiplication $B = U^{-1}AU$ where $A$ is found by inspection of $L$ to be

$$ A = \left[\begin{array}{rrr} 2 & -1 & -1\\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right] $$

$$ \begin{align*} B &= U^{-1}AU \\ \\ &= \left[\begin{array}{rrr} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \end{array} \right] \left[\begin{array}{rrr} 2 & -1 & -1\\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right] \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right]\\ \\ &= \left[\begin{array}{rrr} 2 & -1 & -1\\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right] \end{align*} $$
It is pure coincidence that $A = B$.

Exercise 2¶

Let matrices $A,B\in\mathbb{R}^n$ be similar. Show that

(a) $A^T$ and $B^T$ are similar.

(b) $A^n$ and $B^n$ are similar for every positive integer $n$.

Check Your Work

    (a) $A^T$ and $B^T$ are similar.


We completed previous exercises where we showed that if $S$ is a nonsingular matrix, then $S^T$ is also nonsingular, and $\left(S^T\right)^{-1} = \left(S^{-1}\right)^T$. $$ \begin{align*} B &= S^{-1}AS \\ \\ B^T &= \left(S^{-1}AS\right)^T \\ \\ &= S^TA^T\left(S^{-1}\right)^T \\ \\ &= S^TA^T\left(S^T\right)^{-1} \end{align*} $$
So $A^T$ is similar to $B^T$ via transition matrix $S^T$.

    (b) $A^n$ and $B^n$ are similar for every positive integer $n$.


$$ \begin{align*} B^n &= \left(S^{-1}AS\right)^n \\ \\ &= \left(S^{-1}AS\right)\left(S^{-1}AS\right)\left(S^{-1}AS\right) \cdots \left(S^{-1}AS\right) \\ \\ &= S^{-1}A\left(SS^{-1}\right)A\left(SS^{-1}\right)A\left(S \cdots S^{-1}\right)AS \\ \\ &= S^{-1}A^nS \end{align*} $$
Hence $A^n$ is similar to $B^n$.

Your use of this self-initiated mediated course material is subject to our An international nonprofit organization that empowers people to grow and sustain the thriving commons of shared knowledge and culture. Creative Commons License 4.0