After introducing the concept of eigenvalues and exploring their properties, let us turn our attention to eigenvectors.
- Eigenvectors $\mathbf{x}$ of a linear transformation $L$ are vectors whose image under the linear transformation are scalar multiples of the eigenvector.
$$ L\left(\mathbf{x}\right) = \lambda\mathbf{x} $$
- Eigenvectors $\mathbf{x}$ of a matrix are vectors whose product $A\mathbf{x} = \lambda\mathbf{x}$ are scalar multiples of the eigenvector.
In other words an eigenvector $\mathbf{x}$ and its image $A\mathbf{x}$ are co-linear
$$
A\mathbf{x}\in\text{Span}\left\{\mathbf{x}\right\}
$$
The corresponding eigenvalues $\lambda_i$ are roots of the characteristic polynomial
$$
p_{\lambda} := \left|A-\lambda I\right|
$$
This characteristic polynomial of degree $n$ has $n$ roots, counting multiplicity, although some of these roots
may
be complex conjugate roots. The multiplicity of a root $\lambda_i$ of the characteristic polynomial is called its
algebraic multiplicity
. Each root of a polynomial is a solution of the equation
$$
p_{\lambda}(z) = 0.
$$
This means that for each of the $k\le n$ distinct roots of the characteristic polynomial $\lambda_1$, $\lambda_2$, $\dots$, $\lambda_k$, the matrix
$$
B_{\lambda_i} := A - \lambda_i I
$$
is a singular matrix with a nontrivial null space. The null space of this matrix is called the
eigenspace
of the associated eigenvalue $\lambda_i$.
A basis of the
eigenspace
associated with eigenvalue $\lambda_i$ can be determined readily applying methods from Chapter 1 to matrix $B_{\lambda_i}$. The
nullity
of matrix $B_{\lambda_i}$ is called the
geometric multiplicity
of the eigenvalue $\lambda_i$.
Theorem 7.3.1 Linear Independence of Eigenvectors
If $\lambda_1$, $\lambda_2$, $\dots$, $\lambda_k$ are distinct eigenvalues of matrix $A\in\mathbb{R}^{n\times n}$ with corresponding eigenvectors $\mathbf{x}_1$, $\mathbf{x}_2$, $\dots$, $\mathbf{x}_k$, then the set of eigenvectors $\left\{\mathbf{x}_1,\ \mathbf{x}_2,\ \dots,\ \mathbf{x}_k\right\}$ is a linearly independent set.
Suppose that $\lambda_1$ and $\lambda_2$ are distinct eigenvalues of matrix $\in\mathbb{R}^{n\times n}$ with corresponding eigenvectors $\mathbf{x}_1$ and $\mathbf{x}_2$. This means that $\lambda_1\neq\lambda_2$,
$$
\begin{align*}
A\mathbf{x_1} &= \lambda_1\mathbf{x_1}\qquad\qquad &A\mathbf{x}_2 &= \lambda_2\mathbf{x}_2 \\
\\
\mathbf{x_1}&\in N\left(A - \lambda_1 I\right)\qquad\qquad &\mathbf{x}_2&\in N\left(A - \lambda_2 I\right) \\
\end{align*}
$$
What is the intersection of these two eigenspaces?
$$
N\left(A - \lambda_1 I\right)\cap N\left(A - \lambda_2 I\right)
$$
If vector $x\in N\left(A - \lambda_1 I\right)\cap N\left(A - \lambda_2 I\right)$ then
$$
\lambda_1\mathbf{x} = A\mathbf{x} = \lambda_2\mathbf{x}
$$
Thus
$$
(\lambda_2 - \lambda_1)\mathbf{x} = \mathbf{0}
$$
Our hypothesis is that $\lambda_1\neq \lambda_2$, so $\lambda_2-\lambda_1\neq 0$. Therefore
$\mathbf{x} = \mathbf{0}$. This proves that the eigenspaces for distinct eigenvalues are subspaces of $\mathbb{R}^n$ that intersect at the origin only. We know from chapter 5 that the vectors $\mathbf{x}_1\in N\left(A - \lambda_1 I\right)$ and $\mathbf{x}_2\in N\left(A - \lambda_2 I\right)$ are linearly independent.
Using this argument the first eigenvector is linearly independent from all of rest. Continuing, all of the eigenvectors, $\left\{\mathbf{x}_1,\ \mathbf{x}_2,\ \dots,\ \mathbf{x}_k\right\}$ are linearly independent.
What about eigenvectors associated with repeated roots of the characteristic polynomial?
If and eigenvalues have algebraic multiplicity greater than one, the one expects the null space of $B_{\lambda} = A - \lambda I$ to have a dimension greater than one. Ideally the algebraic multiplicity of an eigenvalue equals the geometric multiplicity. However this does not always hold.
Consider the matrix
$$
A = \begin{bmatrix} 1 &\ 1 \\ 0 &\ 1 \end{bmatrix}
$$
The characteristic polynomial for matrix $A$ is given by
$$
p_{\lambda} = \begin{vmatrix} 1-\lambda &\ 1 \\ 0 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 = 0
$$
Thus $\lambda = 1$ is an eigenvalue of algebraic multiplicity two. Matrix
$$
B_1 := A - I = \begin{bmatrix} 0 &\ 1 \\ 0 &\ 0 \end{bmatrix}
$$
is in row echelon form and it has nullity equal to one. Hence the geometric multiplicity of eigenvalue $\lambda=1$ is one. We can only find a one-dimensional eigenspace associated with this eigenvalue with algebraic multiplicity two.
If $A\in\mathbb{R}^{n\times n}$ is an $n\times n$ matrix with an eigenvalue whose geometric multiplicity is less than its algebraic multiplicity, then we call this matrix defective
If a matrix $A\in\mathbb{R}^{n\times n}$ is not defective, then it has $k\le n$ distinct roots and $n$ roots
counting multiplicity
. For eigenvalue we have an associated eigenspace with dimension equal to the multiplicity of the eigenvalue. This means that the sum of the geometric multiplicities of the eigenvalues will also equal $n$. Thus the direct sum of the eigenspaces will be $\mathbb{R}^n$.
$$
N(B_{\lambda_1})\oplus N(B_{\lambda_2})\oplus\dots\oplus N(B_{\lambda_k}) = \displaystyle\bigoplus_{i=1}^k N(B_{\lambda_i}) = \mathbb{R}^n
$$
If we select a basis for each eigenspace, then the collection of eigenvectors $\left\{\mathbf{x}_1,\ \mathbf{x}_2,\ \dots,\ \mathbf{x}_k\right\}$ will form a basis for $\mathbb{R}^n$ because they constitute a
complete set
of $n$ linearly independent vectors. Such a collection of basis vectors is called an
eigenbasis
for $\mathbb{R}^n$.
Let matrix $A\in\mathbb{R}^n$, have a
complete set
of eigenvectors so that the set of eigenvectors $\left\{ \mathbf{x}_1,\ \mathbf{x}_2,\ \dots,\ \mathbf{x}_n \right\}$ associated with eigenvalues $\left\{ \lambda_1,\ \lambda_2,\ \dots,\ \lambda_n \right\}$ form an eigenbasis for $\mathbb{R}^n$. Remember that eigenvalues with algebraic multiplicity greater than one will appear in the list of eigenvalues more than once, a number equal to its algebraic multiplicity. Define matrix $D$ to be the diagonal matrix with the $n$ eigenvalues on the diagonal; and matrix $X$ so that the $j^{\text{th}}$ column of matrix $X$ is eigenvector $\mathbf{x}_j$.
$$
X = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \end{bmatrix}
$$
The matrix product $AX$ yields
$$
\begin{align*}
AX &= A\begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \end{bmatrix} \\
\\
&= \begin{bmatrix} A\mathbf{x}_1 & A\mathbf{x}_2 & \dots & A\mathbf{x}_n \end{bmatrix} \\
\\
&= \begin{bmatrix} \lambda_1\mathbf{x}_1 & \lambda_2\mathbf{x}_2 & \dots & \lambda_n\mathbf{x}_n \end{bmatrix} \\
\\
&= \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \end{bmatrix}\begin{bmatrix} \lambda_1 &\ &\ &\ \\ \ & \lambda_2 &\ &\ &\ \\ \ &\ &\ \ddots &\ \\ \ &\ &\ &\ & \lambda_n \end{bmatrix} \\
\\
&= XD
\end{align*}
$$
Matrix $X$ is nonsingular because its columns are linearly independent, thus
$$
A = XDX^{-1}\qquad\text{and}\qquad D = X^{-1}AX
$$
Recall
If $A\in\mathbb{R}^{n\times n}$ is an $n\times n$ matrix, then it represents a linear transformation on $\mathbb{R}^n$. If matrix $B\in\mathbb{R}^n$ is a similar matrix, then there is a nonsingular transition matrix $X\in\mathbb{R}^n$ such that
$$ A = XBX^{-1} $$
Furthermore matrix $B$ represents the same linear transformation with respect to a different choice of basis for the domain and codomain $\mathbb{R}^n$.
From out observations, matrix $A$ and diagonal matrix $D$ are similar matrices with transition matrix $X$. Matrix $X$ is the transition matrix from the basis chosen to create matrix $A$ to the eigenbasis.
An $n\times n$ matrix $A$ is called diagonalizable if there exists a nonsingular matrix $X$ and a diagonal matrix $D$ such that
$$ D = X^{-1}AX $$
We say that matrix $X$ diagonalizes matrix $A$.
In the previous section we proved the following
Theorem 7.3.2 ¶
Diagonalizability Theorem
An $n\times n$ matrix $A$ is diagonalizable if and only if $A$ has a complete set of eigenvectors.
Remarks
From remark 5 we can conclude
$$
\begin{align*}
A^2 &= \left(XDX^{-1}\right)\left(XDX^{-1}\right) = \left(XD\right)\left(X^{-1}X\right)\left(DX^{-1}\right) = XD^2X^{-1} \\
\\
&= X\begin{bmatrix} \lambda_1 &\ &\ &\ \\ \ & \lambda_2 &\ &\ &\ \\ \ &\ &\ \ddots &\ \\ \ &\ &\ &\ & \lambda_n \end{bmatrix}\begin{bmatrix} \lambda_1 &\ &\ &\ \\ \ & \lambda_2 &\ &\ &\ \\ \ &\ &\ \ddots &\ \\ \ &\ &\ &\ & \lambda_n \end{bmatrix}X^{-1} \\
\\
&= X\begin{bmatrix} \lambda_1^2 &\ &\ &\ \\ \ & \lambda_2^2 &\ &\ &\ \\ \ &\ &\ \ddots &\ \\ \ &\ &\ &\ & \lambda_n^2 \end{bmatrix}X^{-1}
\end{align*}
$$
In general we have that for any positive integer $k$
$$
A^k = XD^kX^{-1} = X\begin{bmatrix} \lambda_1^k &\ &\ &\ \\ \ & \lambda_2^k &\ &\ &\ \\ \ &\ &\ \ddots &\ \\ \ &\ &\ &\ & \lambda_n^k \end{bmatrix}X^{-1}
$$
Consider the matrix
$$
A = \begin{bmatrix}\ \ 0\ &\ \ 4\ \\ -3\ &\ \ 8\ \end{bmatrix}
$$
The characteristic polynomial is given by
$$
p_{\lambda} = \begin{vmatrix} -\lambda\ &\ \ 4\ \\ -3\ &\ \ 8-\lambda\ \end{vmatrix} = -\lambda(8-\lambda) + 12 = \lambda^2 - 8\lambda + 12 = (\lambda - 6)(\lambda - 2)
$$
The eigenvalues of matrix $A$ are $\lambda_1=6$ and $\lambda_2=2$. Matrix $B_{\lambda_1} = B_6$ is singular
$$
B_6 = \begin{bmatrix} -6\ &\ \ 4 \\ -3\ &\ \ 2\ \end{bmatrix}\rightarrow\begin{bmatrix}\ \ 3\ & -2 \\ -3\ &\ \ 2\ \end{bmatrix}\rightarrow\begin{bmatrix}\ \ 3\ & -2 \\ \ \ 0\ &\ \ 0\ \end{bmatrix}
$$
Utilizing backward substitution for $B_6\mathbf{x}=\mathbf{0}$, $x_2 = \alpha\in\mathbb{R}$ and $3x_1 - 2\alpha = 0$, or $x_1 = \frac{2}{3}\alpha$. A basis for the eigenspace associated with eigenvalue $\lambda_1=6$ can be written
$$
N(B_6) = \text{Span}\left\{ \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} \right\}
$$
We can choose eigenvector $\mathbf{x}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Matrix $B_{\lambda_2} = B_2$ is also singular.
$$
B_2 = \begin{bmatrix} -2\ &\ \ 4\ \\ -3\ &\ \ 6\ \end{bmatrix}\rightarrow\begin{bmatrix}\ \ 1\ & -2
\ \\ -3\ &\ \ 6\ \end{bmatrix}\rightarrow\begin{bmatrix}\ \ 1\ & -2
\ \\ \ \ 0\ &\ \ 0\ \end{bmatrix}
$$
Utilizing backward substitution for $B_2\mathbf{x}=\mathbf{0}$, $x_2 = \alpha\in\mathbb{R}$ and $x_1 - 2\alpha = 0$, so $x_1 = 2\alpha$. A basis for the eigenspace associated with eigenvalue $\lambda_2=2$ can be written
$$
N(B_2) = \text{Span}\left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}
$$
Notice that eigenvectors $\mathbf{x}_1$ and $\mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ are linearly independent. Thus the eigenbasis $\{ \mathbf{x}_1, \mathbf{x}_2 \}$ forms a basis for $\mathbb{R}^2$. Choose
$$
X = \begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix}\qquad\text{and}\qquad D = \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}
$$
It follows that
$$
\begin{align*}
X^{-1}AX &= \dfrac{1}{4}\begin{bmatrix} -1\ &\ \ 2\ \\ \ \ 3\ & -2\ \end{bmatrix}\begin{bmatrix}\ \ 0\ &\ \ 4\ \\ -3\ &\ \ 8\ \end{bmatrix}\begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix} \\
\\
&= \dfrac{1}{4}\begin{bmatrix} -1\ &\ \ 2\ \\ \ \ 3\ & -2\ \end{bmatrix}\begin{bmatrix} 12\ &\ \ 4\ \\ \ 18\ &\ \ 2\end{bmatrix} \\
\\
&= \dfrac{1}{4}\begin{bmatrix}\ 24\ &\ \ 0\ \\ \ \ 0\ &\ \ 8\ \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}
\end{align*}
$$
The matrix exponential of a diagonal matrix can be computed as in the video
$$
\begin{align*}
\text{exp}(D) &= e^D := \displaystyle\lim_{n\rightarrow\infty} \left( I + D + \dfrac{1}{2!}D^2 + \dfrac{1}{3!}D^3 + \dfrac{1}{4!}D^4 + \cdots + \dfrac{1}{n!}D^n \right) \\
\\
&= \displaystyle\lim_{n\rightarrow\infty}\displaystyle\sum_{k=1}^n \dfrac{1}{k!}D^k = \displaystyle\lim_{n\rightarrow\infty}\displaystyle\sum_{k=1}^n \dfrac{1}{k!}\begin{bmatrix} \lambda_1^k &\ &\ &\ \\ \ & \lambda_2^k &\ &\ &\ \\ \ &\ &\ \ddots &\ \\ \ &\ &\ &\ & \lambda_n^k \end{bmatrix} \\
\\
&= \displaystyle\lim_{n\rightarrow\infty}\displaystyle\sum_{k=1}^n \begin{bmatrix} \dfrac{1}{k!}\lambda_1^k &\ &\ &\ \\ \ & \dfrac{1}{k!}\lambda_2^k &\ &\ &\ \\ \ &\ &\ \ddots &\ \\ \ &\ &\ &\ & \dfrac{1}{k!}\lambda_n^k \end{bmatrix} \\
\\
&= \begin{bmatrix} \displaystyle\lim_{n\rightarrow\infty}\displaystyle\sum_{k=1}^n\dfrac{1}{k!}\lambda_1^k &\ &\ &\ \\ \ & \displaystyle\lim_{n\rightarrow\infty}\displaystyle\sum_{k=1}^n\dfrac{1}{k!}\lambda_2^k &\ &\ &\ \\ \ &\ &\ \ddots &\ \\ \ &\ &\ &\ & \displaystyle\lim_{n\rightarrow\infty}\displaystyle\sum_{k=1}^n\dfrac{1}{k!}\lambda_n^k \end{bmatrix} \\
\\
&= \begin{bmatrix}\ \ e^{\lambda_1}\ &\ &\ &\ \\ \ \ &\ \ e^{\lambda_2}\ &\ &\ \\ \ \ &\ &\ \dots\ &\ \\ \ \ &\ &\ &\ &\ e^{\lambda_n}\ \end{bmatrix}
\end{align*}
$$
Likewise the matrix exponential of a diagonalizable matrix $A$ is given by
$$
\begin{align*}
\text{exp}(A) &= e^A = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k!}A^k \\
\\
&= \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k!}\left(XDX{-1}\right)^k \\
\\
&= \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k!}XD^kX^{-1} \\
\\
&= X\left(\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k!}D^k\right)X^{-1} \\
\\
&= Xe^DX^{-1}
\end{align*}
$$
For matrix $A$ is example 2, compute $e^A$.
$$
\begin{align*}
e^A &= Xe^DX^{-1} = \begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix}\begin{bmatrix}\ e^6\ &\ 0\ \\ \ 0\ &\ e^2\ \end{bmatrix}\begin{bmatrix} -\frac{1}{4}\ &\ \ \frac{1}{2}\ \\ \ \ \frac{3}{4}\ & -\frac{1}{2}\ \end{bmatrix} \\
\\
&= \begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix}\begin{bmatrix} -\frac{e^6}{4}\ &\ \ \frac{e^6}{2}\ \\ \ \ \frac{3e^2}{4}\ & -\frac{e^2}{2}\ \end{bmatrix} \\
\\
&= \begin{bmatrix}\ \frac{-e^6 + 3e^2}{2}\ &\ e^6-e^2\ \\ \ \frac{-3e^6 + 3e^2}{4}\ &\ \ \frac{3e^6-e^2}{2}\ \end{bmatrix}
\end{align*}
$$
Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Attribution
You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Noncommercial
You may not use the material for commercial purposes.
Share Alike
You are free to share, copy and redistribute the material in any medium or format. If you adapt, remix, transform, or build upon the material, you must distribute your contributions under the
same license
as the original.