Math 511: Linear Algebra
Singular Value Decomposition
1. Show that $A$ and $A^T$ have the same singular values. How are their singular value decompositions related?¶
$$ \require{color} \definecolor{brightblue}{rgb}{.267, .298, .812} \definecolor{darkblue}{rgb}{0.0, 0.0, 1.0} \definecolor{palepink}{rgb}{1, .73, .8} \definecolor{softmagenta}{rgb}{.99,.34,.86} \definecolor{blueviolet}{rgb}{.537,.192,.937} \definecolor{jonquil}{rgb}{.949,.792,.098} \definecolor{shockingpink}{rgb}{1, 0, .741} \definecolor{royalblue}{rgb}{0, .341, .914} \definecolor{alien}{rgb}{.529,.914,.067} \definecolor{crimson}{rgb}{1, .094, .271} \def\ihat{\mathbf{\hat{\unicode{x0131}}}} \def\jhat{\mathbf{\hat{\unicode{x0237}}}} \def\khat{\mathrm{\hat{k}}} \def\tombstone{\unicode{x220E}} \def\contradiction{\unicode{x2A33}} $$
3. Let¶
$$ \begin{align*} A &= \begin{bmatrix} -2 & 8 & 20 \\ 14 & 19 & 10 \\ 2 & -2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} & 0 \\ \frac{4}{5} & \frac{3}{5} & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 30 & 0 & 0 \\ 0 & 15 & 0 \\ 0 & 0 & 3 \end{bmatrix}\begin{bmatrix} \frac{1}{3} & \frac{2}{3} &\frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix} \\ \end{align*} $$
Find the closest (with respect to the Frobenious norm) matrices of rank 1 and rank 2 to $A$.
4. Let¶
$$ A = \begin{bmatrix} 2 & 5 & 4 \\ 6 & 3 & 0 \\ 6 & 3 & 0 \\ 2 & 5 & 4 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} &\ \ \frac{1}{2} &\ \ \frac{1}{2} &\ \ \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} &\ \ \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} &\ \ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} &\ \ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}\begin{bmatrix} 12& 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}\begin{bmatrix}\ \ \frac{2}{3} &\ \ \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} &\ \ \frac{1}{3} & \frac{2}{3} \\ \ \ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{bmatrix} $$
(a) Use the singular value decomposition of $A$ to give an orthonormal bases of $C(A^T)$ and $N(A)$.
(b) Use the singular value decomposition of $A$ to give an orthonormal bases of $C(A)$ and $N(A^T)$.
(c) Use the singular value decomposition of $A$ to determine the rank of $A$.
5.¶
Prove that if $A\in\mathbb{R}^{n\times n}$ is a symmetric matrix with eigenvalues $\lambda_1$, $\lambda_2$, $\dots$, $\lambda_n$, then the singular value of $A$ are $|\lambda_1|$, $|\lambda_2|$, $\dots$, $|\lambda_n|$.
6.¶
Let $A\in\mathbb{R}^{n\times n}$ be a nonsingular matrix and let $\lambda$ be an eigenvalue of $A$.
(a) Show that $\lambda$ is not equal to zero.
(b) Show that $\dfrac{1}{\lambda}$ is and eigenvalue of $A^{-1}$.
7.¶
Show that if matrix $A$ is of the form
$$ A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix} $$
then $A$ must be defective.
8.¶
Let $A$ be a matrix whose singular value decomposition is given by
$$ A = \begin{bmatrix} \frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} &\ \ \frac{3}{5} \\ \frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} &\ \ \frac{3}{5} & -\frac{2}{5} \\ \frac{2}{5} & -\frac{2}{5} &\ \ \frac{3}{5} & -\frac{2}{5} & -\frac{2}{5} \\ \frac{2}{5} &\ \ \frac{3}{5} & -\frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} \\ \frac{3}{5} &\ \ \frac{2}{5} &\ \ \frac{2}{5} &\ \ \frac{2}{5} &\ \ \frac{2}{5} \end{bmatrix}\begin{bmatrix} 100 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}\begin{bmatrix}\ \ \frac{1}{2} &\ \ \frac{1}{2} &\ \ \frac{1}{2} &\ \frac{1}{2} \\ \ \ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} &\ \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} &\ \ \frac{1}{2} &\ \ \frac{1}{2} \\ -\frac{1}{2} &\ \ \frac{1}{2} & -\frac{1}{2} &\ \frac{1}{2} \end{bmatrix} $$
(a) Determine the rank of $A$.
(b) Find an orthonormal basis for $C(A)$.
(c) Find an orthonormal basis for $N(A)$.
(d) Find an orthonormal basis for $C(A^T)$.
(e) Find an orthonormal basis for $N(A^T)$.
(f) Find the closes rank 1 matrix $B$ to $A$ with respect to the Frobenius norm.
(g) Use the singular value decomposition of $A$ to compute the distance between $A$ and $B$ with respect to the Frobenius norm.