Wichita State University Logo

Math 511: Linear Algebra

Singular Value Decomposition


1. Show that $A$ and $A^T$ have the same singular values. How are their singular value decompositions related?

$\require{color}$ $\definecolor{brightblue}{rgb}{.267, .298, .812}$ $\definecolor{darkblue}{rgb}{0.0, 0.0, 1.0}$ $\definecolor{palepink}{rgb}{1, .73, .8}$ $\definecolor{softmagenta}{rgb}{.99,.34,.86}$ $\definecolor{blueviolet}{rgb}{.537,.192,.937}$ $\definecolor{jonquil}{rgb}{.949,.792,.098}$ $\definecolor{shockingpink}{rgb}{1, 0, .741}$ $\definecolor{royalblue}{rgb}{0, .341, .914}$ $\definecolor{alien}{rgb}{.529,.914,.067}$ $\definecolor{crimson}{rgb}{1, .094, .271}$ $\def\ihat{\mathbf{\hat{\unicode{x0131}}}}$ $\def\jhat{\mathbf{\hat{\unicode{x0237}}}}$ $\def\khat{\mathbf{\hat{k}}}$ $\def\tombstone{\unicode{x220E}}$ $\def\contradiction{\unicode{x2A33}}$

2. Compute the singular value decompositions of the following matrices


2.1 $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$.


2.2 $A = \begin{bmatrix} 2 & -2 \\ 1 & 2 \end{bmatrix}$.

3. Let


$$ \begin{align*} A &= \begin{bmatrix} -2 & 8 & 20 \\ 14 & 19 & 10 \\ 2 & -2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} & 0 \\ \frac{4}{5} & \frac{3}{5} & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 30 & 0 & 0 \\ 0 & 15 & 0 \\ 0 & 0 & 3 \end{bmatrix}\begin{bmatrix} \frac{1}{3} & \frac{2}{3} &\frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix} \\ \end{align*} $$

Find the closest (with respect to the Frobenious norm) matrices of rank 1 and rank 2 to $A$.

4. Let

$$ A = \begin{bmatrix} 2 & 5 & 4 \\ 6 & 3 & 0 \\ 6 & 3 & 0 \\ 2 & 5 & 4 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} &\ \ \frac{1}{2} &\ \ \frac{1}{2} &\ \ \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} &\ \ \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} &\ \ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} &\ \ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}\begin{bmatrix} 12& 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}\begin{bmatrix}\ \ \frac{2}{3} &\ \ \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} &\ \ \frac{1}{3} & \frac{2}{3} \\ \ \ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{bmatrix} $$

(a) Use the singular value decomposition of $A$ to give an orthonormal bases of $C(A^T)$ and $N(A)$.

(b) Use the singular value decomposition of $A$ to give an orthonormal bases of $C(A)$ and $N(A^T)$.

(c) Use the singular value decomposition of $A$ to determine the rank of $A$.

5.

Prove that if $A\in\mathbb{R}^{n\times n}$ is a symmetric matrix with eigenvalues $\lambda_1$, $\lambda_2$, $\dots$, $\lambda_n$, then the singular value of $A$ are $|\lambda_1|$, $|\lambda_2|$, $\dots$, $|\lambda_n|$.

6.

Let $A\in\mathbb{R}^{n\times n}$ be a nonsingular matrix and let $\lambda$ be an eigenvalue of $A$.

(a) Show that $\lambda$ is not equal to zero.

(b) Show that $\dfrac{1}{\lambda}$ is and eigenvalue of $A^{-1}$.

7.

Show that if matrix $A$ is of the form

$$ A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix} $$

then $A$ must be defective.

8.

Let $A$ be a matrix whose singular value decomposition is given by

$$ A = \begin{bmatrix} \frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} &\ \ \frac{3}{5} \\ \frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} &\ \ \frac{3}{5} & -\frac{2}{5} \\ \frac{2}{5} & -\frac{2}{5} &\ \ \frac{3}{5} & -\frac{2}{5} & -\frac{2}{5} \\ \frac{2}{5} &\ \ \frac{3}{5} & -\frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} \\ \frac{3}{5} &\ \ \frac{2}{5} &\ \ \frac{2}{5} &\ \ \frac{2}{5} &\ \ \frac{2}{5} \end{bmatrix}\begin{bmatrix} 100 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}\begin{bmatrix}\ \ \frac{1}{2} &\ \ \frac{1}{2} &\ \ \frac{1}{2} &\ \frac{1}{2} \\ \ \ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} &\ \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} &\ \ \frac{1}{2} &\ \ \frac{1}{2} \\ -\frac{1}{2} &\ \ \frac{1}{2} & -\frac{1}{2} &\ \frac{1}{2} \end{bmatrix} $$

(a) Determine the rank of $A$.

(b) Find an orthonormal basis for $C(A)$.

(c) Find an orthonormal basis for $N(A)$.

(d) Find an orthonormal basis for $C(A^T)$.

(e) Find an orthonormal basis for $N(A^T)$.

(f) Find the closes rank 1 matrix $B$ to $A$ with respect to the Frobenius norm.

(g) Use the singular value decomposition of $A$ to compute the distance between $A$ and $B$ with respect to the Frobenius norm.

Creative Commons Logo - White


Your use of this self-initiated mediated course material is subject to our Creative Commons License .


Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Creative Commons Logo - Black
Attribution
You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Creative Commons Logo - Black
Noncommercial
You may not use the material for commercial purposes.

Creative Commons Logo - Black
Share Alike
You are free to share, copy and redistribute the material in any medium or format. If you adapt, remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.