$\require{color}$ $\definecolor{brightblue}{rgb}{.267, .298, .812}$ $\definecolor{darkblue}{rgb}{0.0, 0.0, 1.0}$ $\definecolor{palepink}{rgb}{1, .73, .8}$ $\definecolor{softmagenta}{rgb}{.99,.34,.86}$ $\definecolor{blueviolet}{rgb}{.537,.192,.937}$ $\definecolor{jonquil}{rgb}{.949,.792,.098}$ $\definecolor{shockingpink}{rgb}{1, 0, .741}$ $\definecolor{royalblue}{rgb}{0, .341, .914}$ $\definecolor{alien}{rgb}{.529,.914,.067}$ $\definecolor{crimson}{rgb}{1, .094, .271}$ $\def\ihat{\mathbf{\hat{\unicode{x0131}}}}$ $\def\jhat{\mathbf{\hat{\unicode{x0237}}}}$ $\def\khat{\mathbf{\hat{k}}}$ $\def\tombstone{\unicode{x220E}}$ $\def\contradiction{\unicode{x2A33}}$
$$
\begin{align*}
A &= \begin{bmatrix} -2 & 8 & 20 \\ 14 & 19 & 10 \\ 2 & -2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} & 0 \\ \frac{4}{5} & \frac{3}{5} & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 30 & 0 & 0 \\ 0 & 15 & 0 \\ 0 & 0 & 3 \end{bmatrix}\begin{bmatrix} \frac{1}{3} & \frac{2}{3} &\frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix} \\
\end{align*}
$$
Find the closest (with respect to the Frobenious norm) matrices of rank 1 and rank 2 to $A$.
(a) Use the singular value decomposition of $A$ to give an orthonormal bases of $C(A^T)$ and $N(A)$.
(b) Use the singular value decomposition of $A$ to give an orthonormal bases of $C(A)$ and $N(A^T)$.
(c) Use the singular value decomposition of $A$ to determine the rank of $A$.
Prove that if $A\in\mathbb{R}^{n\times n}$ is a symmetric matrix with eigenvalues $\lambda_1$, $\lambda_2$, $\dots$, $\lambda_n$, then the singular value of $A$ are $|\lambda_1|$, $|\lambda_2|$, $\dots$, $|\lambda_n|$.
Let $A\in\mathbb{R}^{n\times n}$ be a nonsingular matrix and let $\lambda$ be an eigenvalue of $A$.
(a) Show that $\lambda$ is not equal to zero.
(b) Show that $\dfrac{1}{\lambda}$ is and eigenvalue of $A^{-1}$.
Show that if matrix $A$ is of the form
$$ A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix} $$then $A$ must be defective.
Let $A$ be a matrix whose singular value decomposition is given by
$$ A = \begin{bmatrix} \frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} &\ \ \frac{3}{5} \\ \frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} &\ \ \frac{3}{5} & -\frac{2}{5} \\ \frac{2}{5} & -\frac{2}{5} &\ \ \frac{3}{5} & -\frac{2}{5} & -\frac{2}{5} \\ \frac{2}{5} &\ \ \frac{3}{5} & -\frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} \\ \frac{3}{5} &\ \ \frac{2}{5} &\ \ \frac{2}{5} &\ \ \frac{2}{5} &\ \ \frac{2}{5} \end{bmatrix}\begin{bmatrix} 100 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}\begin{bmatrix}\ \ \frac{1}{2} &\ \ \frac{1}{2} &\ \ \frac{1}{2} &\ \frac{1}{2} \\ \ \ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} &\ \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} &\ \ \frac{1}{2} &\ \ \frac{1}{2} \\ -\frac{1}{2} &\ \ \frac{1}{2} & -\frac{1}{2} &\ \frac{1}{2} \end{bmatrix} $$(a) Determine the rank of $A$.
(b) Find an orthonormal basis for $C(A)$.
(c) Find an orthonormal basis for $N(A)$.
(d) Find an orthonormal basis for $C(A^T)$.
(e) Find an orthonormal basis for $N(A^T)$.
(f) Find the closes rank 1 matrix $B$ to $A$ with respect to the Frobenius norm.
(g) Use the singular value decomposition of $A$ to compute the distance between $A$ and $B$ with respect to the Frobenius norm.
Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Attribution
You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Noncommercial
You may not use the material for commercial purposes.
Share Alike
You are free to share, copy and redistribute the material in any medium or format. If you adapt, remix, transform, or build upon the material, you must distribute your contributions under the
same license
as the original.