Wichita State University Logo

Math 555: Differential Equations

Table of Laplace Transforms


$\Large f(t) = \mathcal{L}^{-1}\{F(s)\}$ $\Large F(s) = \mathcal{L}\{f(t)\}$
1. $\large 1$ $\large \dfrac{1}{s},\quad s > 0$
2. $\large e^{at}$ $\large \dfrac{1}{s-a},\quad s > a$
3. $\large t^n,\quad n\in\mathbb{N}$ $\large \dfrac{n!}{s^{n+1}},\quad s > 0$
4. $\large t^p,\quad p\gt -1$ $\large \dfrac{\Gamma(p+1)}{s^{p+1}},\quad s > 0$
5. $\large \sin(at)$ $\large \dfrac{a}{s^2+a^2},\quad s > 0$
6. $\large \cos(at)$ $\large \dfrac{s}{s^2+a^2},\quad s > 0$
7. $\large \sinh(at)$ $\large \dfrac{a}{s^2-a^2},\quad s > \vert a\vert$
8. $\large \cosh(at)$ $\large \dfrac{s}{s^2-a^2},\quad s > \vert a\vert$
9. $\large e^{at}\sin(bt)$ $\large \dfrac{b}{(s-a)^2 + b^2},\quad s > a$
10. $\large e^{at}\cos(bt)$ $\large \dfrac{s-a}{(s-a)^2 + b^2},\quad s > a$
11. $\large t^n e^{at},\quad n\in\mathbb{N}$ $\large \dfrac{n!}{(s-a)^{n+1}},\quad s > a$
12. $\large u_c(t) = \left\{\begin{matrix} 0 & t\lt c \\ 1 & t\ge c \end{matrix}\right.$ $\large \dfrac{e^{-cs}}{s},\quad s > 0$
13. $\large u_c(t)f(t-c)$ $\large e^{-cs}F(s)$
14. $\large e^{ct}f(t)$ $\large F(s-c)$
15. $\large f(ct)$ $\large \dfrac{1}{c}F\left(\dfrac{s}{c}\right),\quad c > 0$
16. $\large (f*g)(t) = \int_0^t f(t-\tau)g(\tau)\,d\tau$ $\large F(s)G(s)$
17. $\large \delta(t-c)$ $\large e^{-cs}$
18. $\large f^{(n)}(t)$ $\large s^n F(s) - s^{n-1}f(0) -\ldots - f^{(n-1)}(0)$
19. $\large (-t)^n f(t)$ $\large F^{(n)}(s)$