Wichita State University Logo

Math 555: Differential Equations

5.4 Regular Singular Points, Part I


5.4.1 Euler Equations

In this chapter, we've been studying second-order linear differential equations with variable coefficients such as

$$P(x)y'' + Q(x)y' + R(x)y = G(x).$$
If $P(x)=0$ for all $x$ then we have a first-order differential equation, so we usually divide both sides by the function $P(x)$ to obtain the form

$$y'' + p(x)y' + q(x)y = g(x),$$
where $p(x) = \dfrac{Q(x)}{P(x)}$, $q(x) = \dfrac{R(x)}{P(x)}$ and $g(x) = \dfrac{G(x)}{P(x)}$. So the singular points are the points where $P(x)=0$.

An Euler Differential Equation is of the form

$$ax^2y'' + bxy' + cy = 0,$$
where $a$, $b$ and $c$ are constants. We have that $0$ is a singular point because $P(x) = ax^2 = 0$ when $x=0$. It is a regular singular point because we have two finite, well-defined limits.

$$\begin{align*} \displaystyle\lim_{x\to 0}\ (x-0)\dfrac{bx}{ax^2} &= \displaystyle\lim_{x\to 0}\ \dfrac{b}{a} = \dfrac{b}{a} \\ \\ \displaystyle\lim_{x\to 0}\ (x-0)^2\dfrac{c}{ax^2} &= \displaystyle\lim_{x\to 0}\ \dfrac{c}{a} = \dfrac{c}{a} \\ \end{align*}$$

This differential equation can be transformed into a second-order linear differential equations with constant coefficients using the substitution

$$t = \ln(x).$$
If we compute our new derivatives of $y$ with respect to $t$ we obtain

$$\begin{align*} \dfrac{dt}{dx} &= \dfrac{1}{x} \\ \\ \dfrac{dy}{dx} &= \dfrac{dy}{dt}\dfrac{dt}{dx} = \dfrac{1}{x}\dfrac{dy}{dt} \\ \\ \dfrac{d^2y}{dx^2} &= \dfrac{d}{dx}\dfrac{dy}{dx} = \dfrac{d}{dx}\left(\dfrac{1}{x}\dfrac{dy}{dt}\right) \\ \\ &= -\dfrac{1}{x^2}\frac{dy}{dt} + \dfrac{1}{x}\left(\dfrac{d}{dx}\dfrac{dy}{dt}\right) \\ \\ &= -\dfrac{1}{x^2}\frac{dy}{dt} + \dfrac{1}{x}\left(\dfrac{d^2y}{dt^2}\dfrac{dt}{dx}\right) \\ \\ &= \dfrac{1}{x^2}\left(\dfrac{d^2y}{dt^2} - \frac{dy}{dt}\right). \end{align*}$$

Substituting these expressions into our differential equation we have

$$\begin{align*} ax^2y'' + bxy' + cy &= ax^2\left(\dfrac{1}{x^2}\left(\dfrac{d^2y}{dt^2} - \frac{dy}{dt}\right)\right) + bx\left(\dfrac{1}{x}\dfrac{dy}{dt}\right) + cy \\ \\ &= a\dfrac{d^2y}{dt^2} - a\dfrac{dy}{dt} + b\dfrac{dy}{dt} + cy \\ \\ &= a\dfrac{d^2y}{dt^2} + (b-a)\dfrac{dy}{dt} + cy = 0. \end{align*}$$
This new 2nd-order homogeneous linear differential equation with constant coefficients can be easily be solved using the techniques of Chapter 3 .

Recall we will find two roots; either real distinct roots, complex conjugate roots, or repeated roots, $r_1$ and $r_2$. We can write the solution to the homogeneous equation

Solutions to Homogeneous Second-Order Equations with Constant Coefficients

1. Real Distinct Roots $\quad r_1 \neq r_2$

$$y(t) = c_1e^{r_1t} + c_2e^{r_2t},$$
2. Complex Conjugate Roots $\quad r = \mu \pm i\delta$

$$y(t) = e^{\mu t}\left(c_1\cos(\delta t) + c_2\sin(\delta t)\right),$$ 3. Repeated Roots $\quad r_1 = r_2$

$$y(t) = e^{rt}\left(c_1 + c_2t\right).$$

Recall that we are looking for the solution $y(x)$, so we must substitute $t = \ln|x|$ and we have the solutions

Solutions to Euler Equations

1. Real Distinct Roots $\quad r_1 \neq r_2$

$$\begin{align*} y(t) &= c_1e^{r_1\ln|x|} + c_2e^{r_2\ln|x|}, \\ \\ &= c_1|x|^{r_1} + c_2|x|^{r_2}, \end{align*}$$
2. Complex Conjugate Roots $\quad r = \mu \pm i\delta$

$$\begin{align*} y(t) &= e^{\mu\ln|x|}\left(c_1\cos(\delta\ln|x|) + c_2\sin(\delta\ln|x|)\right) \\ \\ &= |x|^{\mu}\left(c_1\cos\left(\ln\left(|x|^{\delta}\right)\right) + c_2\sin\left(\ln\left(|x|^{\delta}\right)\right)\right), \end{align*}$$
3. Repeated Roots $\quad r_1 = r_2$

$$\begin{align*} y(t) &= e^{r\ln|x|}\left(c_1 + c_2\ln|x|\right) \\ \\ &= |x|^r\left(c_1 + c_2\ln|x|\right).\end{align*}$$

Notice that the independent variable $y = e^{rt} = x^r$ are the fundamental solutions. If we use this substitution

$$y = x^r,\qquad y' = rx^{r-1},\qquad y'' = r(r-1)x^{r-2},$$
then our differential equation becomes

$$\begin{align*} ax^2y'' + bxy' + cy &= ax^2\left(r(r-1)x^{r-2}\right) + bx\left(rx^{r-1}\right) + cx^r \\ \\ &= a\left(r^2 - r\right)x^r + brx^r + cx^r \\ \\ &= \left(ar^2 + (b-a)r + c\right)x^r = 0. \end{align*}$$
Since $x=0$ is a singular point of the differential equation, $x^r\neq 0$ for any $x$ in the domain of our solution. Recall the domain of our solution must either be $(-\infty,0)$ or $(0,\infty)$. The gives us the indicial equation because the solution will give us the exponent or index of our independent variable $x$.

$$ar^2 + (b-a)r + c = 0.$$
The solutions of this quadratic equation is precisely the solution of our characteristic equation after the substitution $t = \ln(x)$, so we have our general solution and the fundamental solutions to the differential equation.

5.4.2 Practice Solving Euler Equations

The process for solving Euler equations is very similar to solving homogeneous second-order equations. We begin by finding the indicial equation , which is analogous to the characteristic equation, and determine the values of the index $r$ so that we can write down our solution using the form corresponding to the values of $r$.

Exercise 5.4.1

Find fundamental solutions and a general solution to the Euler equation

$$2x^2y'' + 3xy' - y = 0,\qquad x > 0.$$

View Solution Substituting $y = x^r$ into our differential equation results in

$$\begin{align*} 2x^2r(r-1)x^{r-2} + 3xrx^{r-1} - x^r &= 0 \\ \\ \left(2(r^2 - r) + 3r - 1\right)x^r &= 0 \\ \\ 2r^2 + r - 1 &= 0 \\ \\ (2r - 1)(r + 1) &= 0 \\ \\ r = \dfrac{1}{2},\qquad r &= -1 \\ \\ y_1(x) = x^{1/2},\qquad &y_2(x) = x^{-1} \\ \\ y(x) = c_1x^{1/2} + c_2x^{-1},\qquad &x \gt 0. \\ \end{align*}$$

Solution to Example 1

Exercise 5.4.2

Find the solution to the given initial value problem, plot the solution and describe the behavior of the solution as $x\rightarrow 0$.

$$x^2y'' - 3xy' + 4y = 0,\qquad y(-1) = 2,\ y'(-1) = 3.$$

View Solution Substituting $y = x^r$ into our differential equation results in

$$\begin{align*} x^2r(r-1)x^{r-2} - 3xrx^{r-1} + 4x^r &= 0 \\ \\ \left(r^2-r\right)x^r - 3rx^r + 4x^r &= 0 \\ \\ r^2 - 4r + 4 &= 0 \\ \\ (r - 2)^2 &= 0 \\ \\ y(t) &= e^{2t}\left(c_1 + c_2t\right) \\ \\ y(x) &= x^2\left(c_1 + c_2\ln|x|\right) \end{align*}$$
Here we move to finding the values of $c_1$ and $c_2$ from the initial conditions.

$$\begin{align*} y(-1) &= (-1)^2\left(c_1 + c_2\ln|-1|\right) \\ \\ 2 &= c_1 \\ \\ y'(x) &= 2x\left(2 + c_2\ln|x|\right) - x^2\left(\dfrac{c_2}{|x|}\right) \\ \\ y'(-1) &= 2(-1)\left(2 + c_2\ln|-1|\right) - (-1)^2\left(\dfrac{c_2}{|-1|}\right) \\ \\ 3 &= -4 - c_2 \\ \\ \Rightarrow c_2 &= -7 \\ \\ y(x) &= x^2\left(2 - 7\ln|x|\right),\qquad x \lt 0. \end{align*}$$
Solution to Euler Problem
To compute the limit
$$\begin{align*} \displaystyle\lim_{x\to0^-} 2x^2 - 7x^2\ln\left(|x|\right) &= 0 - 7\displaystyle\lim_{x\to 0^-} x^2\ln\left(|x|\right) \\ \\ &= -7\displaystyle\lim_{x\to0^-}\dfrac{\ln\left(|x|\right)}{x^{-2}} \\ \\ &= -7\displaystyle\lim_{x\to0^-}\dfrac{-\dfrac{1}{|x|}}{-2x^{-3}} \\ \\ &= -7\displaystyle\lim_{x\to0^-}\dfrac{x^3}{|x|} \\ \\ &= 7\displaystyle\lim_{x\to0^-} x^2 = 0. \end{align*}$$

Exercise 5.4.3

Determine the general solution of the differential equation

$$x^2y'' - 3xy' + 4y = 0,$$ in any interval not including the singular point.

View Solution

$$\begin{align*} x^2r(r-1)x^{r-2} + 4xrx^{r-1} + \frac{25}{4}x^r &= 0 \\ \\ \left(r^2 + 3r + \frac{25}{4}\right)x^r &= 0 \\ \\ r^2 + 3r + \frac{25}{4} &= 0 \\ \\ r &= \dfrac{-3\pm\sqrt{9-25}}{2} \\ \\ r &= -\dfrac{3}{2} \pm 2i \\ \\ y(t) &= e^{-3t/2}\left(c_1\cos(2t) + c_2\sin(2t)\right) \\ \\ y(x) &= x^{-3/2}\left(c_1\cos\left(2\ln|x|\right) + c_2\sin\left(2\ln|x|\right)\right) \\ \\ &= x^{-3/2}\left(c_1\cos\left(\ln\left(x^2\right)\right) + c_2\sin\left(\ln\left(x^2\right)\right)\right) \\ \end{align*}$$


$y(x) = x^{-3/2}\left(\cos\left(\ln\left(x^2\right)\right) + \sin\left(\ln\left(x^2\right)\right)\right)$.

If you play the video for a couple of seconds you will see the plot window zoom into the positive $x$-axis toward the origin. The natural logarithm function grows without bound toward minus infinity as $x\to 0$. The cosine and sine functions create a periodic curve that oscillates an infinite number of times along their negative domain to minus infinity. Thus the curve oscillates an infinite number of times as $x$ approaches zero. The cosine and sine function also achieve the maximum amplitude an infinite number of times as $x$ approaches zero. Since our solution divides the cosine and sine function by $x^{3/2}$, the amplitude gets large without bound to an asymptote all while oscillating faster and faster as $x$ approaches zero.

5.4.3 Discontinuities

In calculus, we discussed a difference between removable discontinuites and nonremovable discontinuities . Recall the definition of continuity

Definition of Continuity

A function $f$ defined on an interval of the real line $I=[c,d]\subset\mathbb{R}$ is continuous at $x=a$ if and only if

$$\displaystyle\lim_{x\to a^+} f(x) = \displaystyle\lim_{x\to a^-} f(x) = f(a) = L < \infty.$$

If $f$ is not continuous at $x=a$, then $f$ is said to have a discontinuity at $a$. There are degrees of discontinuity.

Definition of Removable Discontinuities

A function $f$ defined on an interval of the real line $I=[c,a)\cup(a,d]\subset\mathbb{R}$ has a removable discontinuity at $x=a$ if and only if
$$\displaystyle\lim_{x\to a^+} f(x) = \displaystyle\lim_{x\to a^-} f(x) = L < \infty,$$
but $f$ is not well-defined at $x=a$; that is $f(a)$ does not exist or $x=a$ is not in the domain of $f$.


Removable Discontinuity

Removable Discontinuity at $x=3$.

We call this weak discontinuity removable because we can fill the discontinuity by defining a new function $g:I\to\mathbb{R}$

$$g(x) = \left\{\begin{array}{lcl} f(x) & \qquad & x\neq a \\ L = \displaystyle\lim_{x\to a} f(x) & \qquad & x=a \end{array}\right..$$

A more serious discontinuity occurs when the two-sided limit does not exist; either because the limit from the left and the limit from the right are different finite values, or because one or both of the one-sided limits is infinite.

Definition of Jump Discontinuity

A function $f$ defined on an interval of the real line $I=[c,d]\subset\mathbb{R}$ has a jump discontinuity at $x=a$ if and only if

$$\displaystyle\lim_{x\to a^-} f(x) = L \neq M = \displaystyle\lim_{x\to a+} f(x).$$

The most serious discontinuity occurs where the graph of a function encounters a vertical asymptote.

Definition of Vertical Asymptote

A function $f$ defined on an interval of the real line $I=[c,a)\cup(a,d]\subset\mathbb{R}$ has a vertical asymptote at $x=a$ if either

$$\begin{align*} \lim_{x\to a^-} f(x) &= \pm\infty, \\ \\ \displaystyle\lim_{x\to a^+} f(x) &= \pm\infty, \end{align*}$$
or both.

5.4.3 Singular Points of a Differential Equation

Recall the first equation in Section 5.4.1

Definition of Singular Point

For a second-order linear differential equation given by

$$P(x)y'' + Q(x)y' + R(x)y = G(x),$$
any point $x=a$ such that $P(a)=0$ is a singular point of the differential equation.

In standard form our differential equation takes the form

$$y'' + p(x)y' + q(x)y = g(x),$$
where $p(x) = \dfrac{Q(x)}{P(x)}$, $q(x) = \dfrac{R(x)}{P(x)}$ and $g(x) = \dfrac{G(x)}{P(x)}$. Like discontinuities, there are different types of singular points of a differential equation. If the singular point is similar to the singular point for Euler's Equation then we would like to find a similar solution

$$y(x) = x^r\phi(x),$$
where $\phi(x)$ is an analytic function on some interval of convergence. If our singular point is $x=0$ and $\phi(x)$ is analytic on some circle of radius $\rho$ centered at $(0,0)$, then it has an absolutely convergent Maclaurin series

$$\phi(x) = \displaystyle\sum_{n=0}^{\infty} a_nx^n.$$
That means our solution takes the form

$$y(x) = x^r\displaystyle\sum_{n=0}^{\infty} a_nx^n = \displaystyle\sum_{n=0}^{\infty} a_nx^{n+r}.$$
Notice that if $0 < r < 1$, then the solution may not be differentiable at $x=0$. To see this let us look at the graph of $\phi(x) = |x|^{\frac{1}{2}}\cos(2x)$.

Example of a function that has a cusp at x=0
if $r < 0$, then $\displaystyle\lim_{x\to 0} \phi(x)=\pm\infty$. Too see this let us look at the graph of $\phi(x) = |x|^{-\frac{1}{2}}\cos(2x)$.
Example of a function that has a vertical asymptote at x=0

5.4.4 Solving a Differential Equation with a Singular Point

Before discussing more theoretical information, let us do an example to connect our method to solve Euler's equations to solving equations with a "well-behaved" singular point.

Example 5.4.1

Solve the differential equation

$$2x^2y'' - xy' + (1 + x)y = 0.$$

Solution

We will assume that this differential equation has such a well-behaved singularity at $x=0$, just like Euler's equation, and proceed to find a pair of fundamental solutions.

$$y = x^r\displaystyle\sum_{n=0}^{\infty} a_nx^n = \displaystyle\sum_{n=0}^{\infty} a_nx^{n+r}.$$
Differentiating we twice we obtain

$$y'(x) = \displaystyle\sum_{n=0}^{\infty} a_n(n+r)x^{n+r-1}\text{ and }y''(x) = \displaystyle\sum_{n=0}^{\infty} a_n(n+r)(n+r-1)x^{n+r-2}.$$
Substituting these expression into our differential equation results in

$$2x^2\displaystyle\sum_{n=0}^{\infty} a_n(n+r)(n+r-1)x^{n+r-2} - x\displaystyle\sum_{n=0}^{\infty} a_n(n+r)x^{n+r-1} + (1 + x)\displaystyle\sum_{n=0}^{\infty} a_nx^{n+r} = 0.$$
Distributing multiplication over addition yields

$$\displaystyle\sum_{n=0}^{\infty} 2a_n(n+r)(n+r-1)x^{n+r} - \displaystyle\sum_{n=0}^{\infty} a_n(n+r)x^{n+r} + \displaystyle\sum_{n=0}^{\infty} a_nx^{n+r} + \displaystyle\sum_{n=0}^{\infty} a_nx^{n+r+1} = 0.$$
We need to adjust the index of the last sum by substituting $n-1$ for $n$ to obtain

$$\displaystyle\sum_{n=0}^{\infty} 2a_n(n+r)(n+r-1)x^{n+r} - \displaystyle\sum_{n=0}^{\infty} a_n(n+r)x^{n+r} + \displaystyle\sum_{n=0}^{\infty} a_nx^{n+r} + \displaystyle\sum_{n=1}^{\infty} a_{n-1}x^{n+r} = 0.$$
The first three sums start at $n=0$, while the last sum starts at $n=1$ so we will re-write the first three sums

$$ \begin{align*} 2a_0(r)(r-1)x^r &- a_0(r)x^r + a_0x^r + \sum_{n=1}^{\infty} 2a_n(n+r)(n+r-1)x^{n+r} + \ldots \\ &\sum_{n=1}^{\infty} a_n(n+r)x^{n+r} + \sum_{n=1}^{\infty} a_nx^{n+r} + \sum_{n=1}^{\infty} a_{n-1}x^{n+r} = 0. \end{align*}$$
or

$$ a_0\left[2r(r-1) - r + 1\right]x^r + \displaystyle\sum_{n=1}^{\infty} \left[\left(2(n+r)(n+r-1) - (n+r) + 1\right)a_n + a_{n-1}\right]x^{n+r} = 0.$$
Since all of our coefficients must be equal to zero we have two equations; an indicial equation for $r$

$$2r(r-1) - r + 1 = 2r^2 - 3r + 1 = (2r-1)(r-1) = 0,$$
and a recurrence equation

$$\left(2(n+r)(n+r-1) - (n+r) + 1\right)a_n + a_{n-1} = 0,\qquad n\ge 1.$$
This gives us two distinct exponents at the singularity $r=\frac{1}{2}$ and $r=1$. Using the recurrence equation we solve for $a_n$ to get the recurrence formula

$$ a_n = -\dfrac{a_{n-1}}{2(n+r)^2 - 3(n+r) + 1} = -\dfrac{a_{n-1}}{\left(2(n+r)-1\right)\left(n+r-1\right)},\qquad n\ge 1.$$
Notice that we get our two fundamental solutions from the two indices like in the case of Euler's equation instead of obtaining a recurrence formula that separates into two separate solutions. For $r=1$, the recurrence formula becomes

$$a_n = -\dfrac{a_{n-1}}{(2n+1)n},\qquad n\ge 1.$$

The first few coefficients for the first fundamental series

$$\begin{align*} a_1 &= -\dfrac{a_0}{3\cdot 1}, \\ \\ a_2 &= -\dfrac{a_1}{5\cdot 2} = \dfrac{a_0}{(3\cdot 5)\cdot (1\cdot 2)}, \\ \\ a_3 &= -\dfrac{a_2}{7\cdot 3} = \dfrac{a_0}{(3\cdot 5\cdot 7)\cdot (1\cdot 2\cdot 3)}, \\ \end{align*}$$

give us the pattern for the equation of the general $n^{th}$ term

$$\begin{align*} a_n &= (-1)^n\dfrac{a_0}{(1\cdot 3\cdots (2n+1))n!} \\ \\ &= \dfrac{(-1)^n \color{#ec008c}{(2\cdot 4\cdots 2n)}}{1\cdot \color{#ec008c}{2}\cdot 3\cdot \color{#ec008c}{4}\cdots \color{#ec008c}{(2n)}(2n+1))n!}a_0 \\ \\ &= \dfrac{(-1)^n\color{#307fe2}{2^n}\color{#ec008c}{(1\cdot 2\cdots n)}}{(2n+1)!n!}a_0 \\ \\ &= \dfrac{(-1)^n2^nn!}{(2n+1)!n!}a_0 = \dfrac{(-1)^n2^n}{(2n+1)!}a_0. \end{align*}$$
This makes our series solution

$$\begin{align*} y_1(x) &= \displaystyle\sum_{n=0}^{\infty} a_nx^{n+1} \\ \\ &= a_0x + \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^n2^n}{(2n+1)!}a_0x^{n+1} \\ \\ &= a_0\left(x + \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^n2^n}{(2n+1)!}x^{n+1}\right) \\ \\ &= a_0x\left(1 + \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^n2^n}{(2n+1)!}x^n\right) \\ \end{align*}$$
Thus our first fundamental solution is given by

$$y_1(x) = x\left(1 + \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^n2^n}{(2n+1)!}x^n\right).$$

First Fundamental Solution of Example 5.4.1
We can find the second fundamental solution using the second root of the indicial equation $r=\dfrac{1}{2}$. The recurrence formula becomes

$$a_n = -\dfrac{a_{n-1}}{\left(2\left(n+\frac{1}{2}\right)-1\right)\left(n+\frac{1}{2}-1\right)} = -\frac{a_{n-1}}{2n\left(n - \frac{1}{2}\right)} = -\dfrac{a_{n-1}}{n(2n-1)},\qquad n\ge 1.$$
The first few coefficients of the second fundamental solution

$$\begin{align*} a_1 &= -\dfrac{a_0}{1\cdot 1}, \\ \\ a_2 &= -\dfrac{a_1}{2\cdot 3} = \dfrac{a_0}{(1\cdot 2)\cdot(1\cdot 3)}, \\ \\ a_3 &= -\dfrac{a_2}{3\cdot 5} = -\dfrac{a_0}{(1\cdot 2\cdot 3)\cdot(1\cdot 3\cdot 5)}, \\ \\ a_4 &= -\dfrac{a_3}{4\cdot 7} = \dfrac{a_0}{(1\cdot 2\cdot 3\cdot 4)\cdot(1\cdot 3\cdot 5\cdot 7)}, \end{align*}$$
give us the pattern for the equation of the general $n^{th}$ term

$$\begin{align*} a_n &= (-1)^n\dfrac{a_0}{n!\left(1\cdot 3\cdot 5\cdots (2n-1)\right)} \\ \\ &= \dfrac{(-1)^n\color{#ec008c}{2\cdot 4\cdots 2n}}{n!\left(1\cdot \color{#ec008c}{2}\cdot 3\cdot \color{#ec008c}{4}\cdot 5\cdots(2n-1)\color{#ec008c}{(2n)}\right)}a_0 \\ \\ &= \dfrac{(-1)^n2^nn!}{n!(2n)!}a_0 = \dfrac{(-1)^n2^n}{(2n)!}a_0 \end{align*}$$
This makes our second fundamental solution

$$\begin{align*} y_2(x) &= \displaystyle\sum_{n=0}^{\infty} a_nx^{n+\frac{1}{2}} \\ \\ &= a_0x^{1/2} + \displaystyle\sum_{n=1}^{\infty}\dfrac{(-1)^n2^n}{(2n)!}a_0x^{n+\frac{1}{2}} \\ \\ &= a_0\left(x^{1/2} + \displaystyle\sum_{n=1}^{\infty}\dfrac{(-1)^n2^n}{(2n)!}x^{n+\frac{1}{2}}\right) \\ \\ &= a_0x^{1/2}\left(1 + \displaystyle\sum_{n=1}^{\infty}\dfrac{(-1)^n2^n}{(2n)!}x^n\right) \\ \end{align*}$$
Thus our second fundamental solution is given by

$$y_2(x) = x^{1/2}\left(1 + \displaystyle\sum_{n=1}^{\infty}\dfrac{(-1)^n2^n}{(2n)!}x^n\right),\qquad x>0.$$

Second Fundamental Solution of Example 5.4.1

5.4.5 Regular Singular Points

The question we need to answer is

What condition(s) must a second-order linear differential equation

$$P(x)y'' + Q(x)y' + R(x)y = 0$$
satisfy to have an absolutely convergent solution of the form

$$y = \displaystyle\sum_{n=0}^{\infty} a_nx^{n+r}$$
on some interval $(-\rho,0)$ or $(0,\rho)$.

If we write our differential equation as we did in 5.4.1 ,

$$y'' + p(x)y' + q(x)y = 0.$$
or multiplying both sides by $x^2$

$$x^2y'' + x\left(xp(x)\right)y' + \left(x^2q(x)\right)y = 0,$$
where $xp(x)$ and $x^2q(x)$ are analytic functions on some interval of radius $\rho$ centered at $0$. That is each has an absolutely convergent power series

$$xp(x) = \color{#307fe2}{\displaystyle\sum_{n=0}^{\infty} p_nx^n}$$
and

$$x^2q(x) = \color{#ec008c}{\displaystyle\sum_{n=0}^{\infty} q_nx^n}.$$
Thus we can compute two limits

$$\displaystyle\lim_{x\to 0} x\dfrac{x^2p(x)}{x^2} = \displaystyle\lim_{x\to 0} xp(x) = p_0 + \displaystyle\sum_{n=1}^{\infty} p_n0^n = p_0,$$ and $$\displaystyle\lim_{x\to 0} x^2\dfrac{x^2q(x)}{x^2} = \displaystyle\lim_{x\to 0} x^2q(x) = q_0 + \displaystyle\sum_{n=1}^{\infty} q_n0^n = q_0.$$
These are finite limits and thus this condition we need to satisfy becomes

Definition of Regular Singular Point

If the differential equation

$$y'' + p(x)y' + q(x)y = 0$$
has a singular point at $x=x_0$ and the two limits

$$ \lim_{x\to x_0} (x-x_0)p(x) = p_0\qquad\qquad\qquad \displaystyle\lim_{x\to x_0} (x-x_0)^2q(x) = q_0$$
are both well-defined finite limits then the singular point is called a regular singular point .

Example 5.4.2

Consider the differential equation

$$2xy'' + y' + xy = 0.$$
Show that $x=0$ is a regular singular point and find the general solution.

Solution

Show that $x=0$ is a regular singular point.
The standard form of the second-order linear differential equation is

$$y'' + \dfrac{1}{2x}y' + \dfrac{1}{2}y = 0,$$
and $x=0$ is a singular point since $P(0) = 2(0) = 0$. If we compute the two limits

$$\begin{align*} \displaystyle\lim_{x\to 0} xp(x) &= \displaystyle\lim_{x\to 0} x\dfrac{1}{2x} = \displaystyle\lim_{x\to 0} \dfrac{1}{2} = \dfrac{1}{2} \\ \\ \displaystyle\lim_{x\to 0} x^2q(x) &= \displaystyle\lim_{x\to 0} x^2\dfrac{1}{2} = 0, \end{align*}$$
and we conclude that $x=0$ is a regular singular point.

Determine the indicial equation and the roots of the indicial equation.
First we need to multiply both sides of our differential equation by $x$ to get

$$2x^2y'' + xy' + x^2y = 0.$$

$$y(x) = \displaystyle\sum_{n=0}^{\infty} a_nx^{n+r}$$
We obtain the series form of our differential operator $L[y]$

$$\begin{align*} &= 2x^2\displaystyle\sum_{n=0}^{\infty} a_n(n+r)(n+r-1)x^{n+r-2} + x\displaystyle\sum_{n=0}^{\infty} a_n(n+r)x^{n+r-1} + x^2\displaystyle\sum_{n=0}^{\infty} a_nx^{n+r} \\ \\ &= \displaystyle\sum_{n=0}^{\infty} 2a_n(n+r)(n+r-1)x^{n+r} + \displaystyle\sum_{n=0}^{\infty} a_n(n+r)x^{n+r} + \displaystyle\sum_{n=0}^{\infty} a_nx^{n+r+2} \\ \\ &= \displaystyle\sum_{n=0}^{\infty} 2a_n(n+r)(n+r-1)x^{n+r} + \displaystyle\sum_{n=0}^{\infty} a_n(n+r)x^{n+r} + \displaystyle\sum_{n=2}^{\infty} a_{n-2}x^{n+r} \\ \\ &= 2a_0(r)(r-1)x^r + 2a_1(r+1)rx^{r+1} + a_0rx^r + a_1(r+1)x^{r+1} \\ &\qquad\ + \displaystyle\sum_{n=2}^{\infty} 2a_n(n+r)(n+r-1)x^{n+r} + \displaystyle\sum_{n=x}^{\infty} a_n(n+r)x^{n+r} + \displaystyle\sum_{n=2}^{\infty} a_{n-2}x^{n+r} \\ \\ &= a_0\left(2(r^2-r) + r\right)x^r + a_1\left(2(r^2+r) + r + 1\right)x^{r+1} \\ &\qquad\ + \displaystyle\sum_{n=2}^{\infty} \left[2a_n(n+r)(n+r-1) + a_n(n+r) + a_{n-2}\right]x^{n+r} \\ \\ &= a_0\left(2r^2-r\right)x^r + a_1\left(2r^2 + 3r + 1\right)x^{r+1} \\ &\qquad\ + \displaystyle\sum_{n=2}^{\infty} \left[a_n\left(2(n+r)(n+r-1) + (n+r)\right) + a_{n-2}\right]x^{n+r} \end{align*}$$
Since all the coefficients of the series must be zero, yet $a_0\neq 0$ for a non-trivial solution, the indicial equation is given by

$$2r^2-r = r(2r-1) = 0.$$
So the roots of the indicial equation are $r=0$ and $r=\frac{1}{2}$.

Determine the recurrence relation.

First notice the other term outside of the series must also be zero,

$$a_1\left(2r^2 + 3r + 1\right) = 0$$
If $r=0$, then $a_1(2\cdot 0^2 + 3\cdot 0 + 1) = a_1 = 0$. And

if $r=\frac{1}{2}$, then $a_1\left(2\left(\frac{1}{4}\right) + 3\left(\frac{1}{2}\right) + 1\right) = 3a_1 = 0$. In either case $a_1=0$.

For the indices greater than one we still need each of the coefficients to be equal to zero, so the recurrence equation is

$$\begin{align*} a_n\left(2(n+r)(n+r-1) + (n+r)\right) + a_{n-2} &= 0 \\ \\ a_n(n+r)\left(2(n+r-1) + 1\right) &= -a_{n-2} \\ \\ a_n(n+r)(2n + 2r - 1) &= -a_{n-2}, \end{align*}$$
which we solve for $a_n$ to find

$$a_n = -\dfrac{a_{n-2}}{(n+r)(2n + 2r - 1)}.$$

Find the fundamental series solution for $x>0$ corresponding to the larger root.

For $r=\frac{1}{2}$, the recurrence formula becomes

$$\begin{align*} a_n &= -\dfrac{a_{n-2}}{\left(n+\frac{1}{2}\right)\left(2n + 2\frac{1}{2} - 1\right)} \\ \\ &= -\dfrac{a_{n-2}}{\left(n+\frac{1}{2}\right)(2n)} \\ \\ &= -\dfrac{a_{n-2}}{(2n+1)n},\qquad n\ge 2. \end{align*}$$
From the first few coefficients

$$\begin{align*} a_1 &= 0 \\ a_2 &= -\dfrac{a_0}{5\cdot 2} \\ a_3 &= -\dfrac{a_1}{7\cdot 3} = 0 \\ a_4 &= -\dfrac{a_2}{9\cdot 4} = \dfrac{a_0}{(5\cdot 9)\cdot (2\cdot 4)} \\ a_5 &= -\dfrac{a_3}{11\cdot 5} = 0 \\ a_6 &= -\dfrac{a_4}{13\cdot 6} = -\dfrac{a_0}{(5\cdot 9\cdot 13)\cdot (2\cdot 4\cdot 6)} \\ &\ddots \\ a_{2n-1} &= -\dfrac{a_{2n-3}}{(4n-1)(2n-1)} = 0 \\ a_{2n} &= -\dfrac{a_{2n-2}}{(4n+1)(2n)} = (-1)^n\dfrac{a_0}{\left(5\cdot 9\cdots (4n+1)\right)(2\cdot 4\cdots 2n)} \\ &= \dfrac{(-1)^n}{\left(5\cdot 9\cdots (4n+1)\right)2^nn!}a_0, \\ \\ \end{align*}$$
the first fundamental solution of our differential equation is

$$y_1(x) = x^{1/2}\left(1 + \displaystyle\sum_{n=1}^{\infty} (-1)^n\dfrac{x^{2n}}{\left(5\cdot 9\cdots (4n+1)\right)2^nn!}\right).$$

Determine the series solution of the other indicial root.

For $r=0$, the recurrence formula becomes

$$a_n = -\dfrac{a_{n-2}}{n(2n - 1)}.$$
From the first few coefficients

$$\begin{align*} a_1 &= 0 \\ a_2 &= -\dfrac{a_0}{2(3)} \\ a_3 &= -\dfrac{a_1}{3(5)} = 0 \\ a_4 &= -\dfrac{a_2}{4\cdot 7} = \dfrac{a_0}{(2\cdot 4)\cdot(3\cdot 7)} \\ a_5 &= -\dfrac{a_3}{5\cdot 9} = 0 \\ a_6 &= -\dfrac{a_4}{6\cdot 11} = -\dfrac{a_0}{(2\cdot 4\cdot 6)\cdot(3\cdot 7\cdot 11)} \\ &\ddots \\ a_{2n-1} &= -\dfrac{a_{2n-3}}{(2n-1)\cdot(4n-3)} = 0 \\ a_{2n} &= -\dfrac{a_{2n-2}}{2n\cdot(4n-1)} = (-1)^n\dfrac{a_0}{(2\cdot 4\cdots(2n))\cdot(3\cdot 7\cdots(4n-1))} \\ &= \dfrac{(-1)^n}{2^nn!(3\cdot 7\cdots(4n-1))}a_0, \end{align*}$$
the second fundamental solution of our series is

$$y_2(x) = 1 + \displaystyle\sum_{n=1}^{\infty}(-1)^n\dfrac{x^{2n}}{2^nn!(3\cdot 7\cdots(4n-1))}.$$

Creative Commons Logo - White


Your use of this self-initiated mediated course material is subject to our Creative Commons License .


Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Creative Commons Logo - Black
Attribution
You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Creative Commons Logo - Black
Noncommercial
You may not use the material for commercial purposes.

Creative Commons Logo - Black
Share Alike
You are free to share, copy and redistribute the material in any medium or format. If you adapt, remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.